基因组学和肺癌的早期诊断。

Francesco Pepe, Tancredi Didier Bazan Russo, Valerio Gristina, Andrea Gottardo, Giulia Busuito, Giuliana Iannì, Gianluca Russo, Claudia Scimone, Lucia Palumbo, Lorena Incorvaia, Giuseppe Badalamenti, Antonio Galvano, Viviana Bazan, Antonio Russo, Giancarlo Troncone, Umberto Malapelle
{"title":"基因组学和肺癌的早期诊断。","authors":"Francesco Pepe, Tancredi Didier Bazan Russo, Valerio Gristina, Andrea Gottardo, Giulia Busuito, Giuliana Iannì, Gianluca Russo, Claudia Scimone, Lucia Palumbo, Lorena Incorvaia, Giuseppe Badalamenti, Antonio Galvano, Viviana Bazan, Antonio Russo, Giancarlo Troncone, Umberto Malapelle","doi":"10.1080/17410541.2025.2494982","DOIUrl":null,"url":null,"abstract":"<p><p>Lung cancer (LC) remains the leading cause of cancer-related mortality worldwide, with most cases diagnosed at advanced stages, resulting in poor survival rates. Early detection significantly improves outcomes, yet current screening methods, such as low-dose computed tomography (LDCT), are limited by high false-positive rates, radiation exposure, and restricted eligibility criteria. This review highlights the transformative potential of genomic and molecular technologies in advancing the early detection of LC. Key innovations include liquid biopsy tools, such as circulating tumor DNA (ctDNA) and cell-free DNA (cfDNA) analysis, which offer minimally invasive approaches to detect tumor-specific genetic and epigenetic alterations. Emerging biomarkers, including methylation signatures, cfDNA fragmentomics, and multi-omics profiles, demonstrate improved sensitivity and specificity in identifying early-stage tumors. Advanced platforms like next-generation sequencing (NGS) and machine-learning algorithms further enhance diagnostic accuracy. Integrated approaches that combine genomic data with LDCT imaging and artificial intelligence (AI) show promise in addressing current limitations by improving risk stratification and nodule characterization. The review also explores multi-cancer early detection assays and precision diagnostic strategies tailored for diverse at-risk populations. By leveraging these advancements, clinicians can achieve earlier diagnoses, reduce unnecessary procedures, and ultimately decrease LC mortality.</p>","PeriodicalId":94167,"journal":{"name":"Personalized medicine","volume":" ","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genomics and the early diagnosis of lung cancer.\",\"authors\":\"Francesco Pepe, Tancredi Didier Bazan Russo, Valerio Gristina, Andrea Gottardo, Giulia Busuito, Giuliana Iannì, Gianluca Russo, Claudia Scimone, Lucia Palumbo, Lorena Incorvaia, Giuseppe Badalamenti, Antonio Galvano, Viviana Bazan, Antonio Russo, Giancarlo Troncone, Umberto Malapelle\",\"doi\":\"10.1080/17410541.2025.2494982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lung cancer (LC) remains the leading cause of cancer-related mortality worldwide, with most cases diagnosed at advanced stages, resulting in poor survival rates. Early detection significantly improves outcomes, yet current screening methods, such as low-dose computed tomography (LDCT), are limited by high false-positive rates, radiation exposure, and restricted eligibility criteria. This review highlights the transformative potential of genomic and molecular technologies in advancing the early detection of LC. Key innovations include liquid biopsy tools, such as circulating tumor DNA (ctDNA) and cell-free DNA (cfDNA) analysis, which offer minimally invasive approaches to detect tumor-specific genetic and epigenetic alterations. Emerging biomarkers, including methylation signatures, cfDNA fragmentomics, and multi-omics profiles, demonstrate improved sensitivity and specificity in identifying early-stage tumors. Advanced platforms like next-generation sequencing (NGS) and machine-learning algorithms further enhance diagnostic accuracy. Integrated approaches that combine genomic data with LDCT imaging and artificial intelligence (AI) show promise in addressing current limitations by improving risk stratification and nodule characterization. The review also explores multi-cancer early detection assays and precision diagnostic strategies tailored for diverse at-risk populations. By leveraging these advancements, clinicians can achieve earlier diagnoses, reduce unnecessary procedures, and ultimately decrease LC mortality.</p>\",\"PeriodicalId\":94167,\"journal\":{\"name\":\"Personalized medicine\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Personalized medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17410541.2025.2494982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Personalized medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17410541.2025.2494982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肺癌(LC)仍然是全球癌症相关死亡的主要原因,大多数病例在晚期被诊断出来,导致生存率很低。早期检测可显著改善预后,但目前的筛查方法,如低剂量计算机断层扫描(LDCT),受到假阳性率高、辐射暴露和限制性资格标准的限制。这篇综述强调了基因组和分子技术在推进LC早期检测方面的变革潜力。关键的创新包括液体活检工具,如循环肿瘤DNA (ctDNA)和无细胞DNA (cfDNA)分析,它们提供了检测肿瘤特异性遗传和表观遗传改变的微创方法。新兴的生物标志物,包括甲基化特征、cfDNA片段组学和多组学谱,在识别早期肿瘤方面显示出更高的敏感性和特异性。下一代测序(NGS)和机器学习算法等先进平台进一步提高了诊断的准确性。将基因组数据与LDCT成像和人工智能(AI)相结合的综合方法有望通过改善风险分层和结节特征来解决当前的局限性。该综述还探讨了针对不同高危人群量身定制的多种癌症早期检测分析和精确诊断策略。通过利用这些进步,临床医生可以实现早期诊断,减少不必要的手术,并最终降低LC死亡率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genomics and the early diagnosis of lung cancer.

Lung cancer (LC) remains the leading cause of cancer-related mortality worldwide, with most cases diagnosed at advanced stages, resulting in poor survival rates. Early detection significantly improves outcomes, yet current screening methods, such as low-dose computed tomography (LDCT), are limited by high false-positive rates, radiation exposure, and restricted eligibility criteria. This review highlights the transformative potential of genomic and molecular technologies in advancing the early detection of LC. Key innovations include liquid biopsy tools, such as circulating tumor DNA (ctDNA) and cell-free DNA (cfDNA) analysis, which offer minimally invasive approaches to detect tumor-specific genetic and epigenetic alterations. Emerging biomarkers, including methylation signatures, cfDNA fragmentomics, and multi-omics profiles, demonstrate improved sensitivity and specificity in identifying early-stage tumors. Advanced platforms like next-generation sequencing (NGS) and machine-learning algorithms further enhance diagnostic accuracy. Integrated approaches that combine genomic data with LDCT imaging and artificial intelligence (AI) show promise in addressing current limitations by improving risk stratification and nodule characterization. The review also explores multi-cancer early detection assays and precision diagnostic strategies tailored for diverse at-risk populations. By leveraging these advancements, clinicians can achieve earlier diagnoses, reduce unnecessary procedures, and ultimately decrease LC mortality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信