Kaisa-Leena Huttunen, Jacqueline Malazarte, Jussi Jyväsjärvi, Kaisa Lehosmaa, Timo Muotka
{"title":"河流中细菌的时间β多样性:网络位置对浮游细菌和生物膜群落的影响不同。","authors":"Kaisa-Leena Huttunen, Jacqueline Malazarte, Jussi Jyväsjärvi, Kaisa Lehosmaa, Timo Muotka","doi":"10.1007/s00248-025-02522-3","DOIUrl":null,"url":null,"abstract":"<p><p>Concern about biodiversity loss has yielded a surge of studies on temporal change in α-diversity, whereas temporal β-diversity has gained less interest. We sampled bacterioplankton, biofilm, and riparian soil bacteria repeatedly across the open-water season in a pristine stream network to determine the level of temporal β-diversity in relation to stream network position and environmental variability. We tested the hypothesis that aquatic bacterial communities in isolated and environmentally heterogenous headwaters exhibit high temporal β-diversity while the better-connected and environmentally more stable mainstem sections support more stable communities, and soil communities bear no relationship to network position. As expected, temporal β-diversity decreased from headwaters toward mainstems for bacterioplankton. Against expectations, an opposite pattern was observed for biofilm. For bacterioplankton, temporal β-diversity was positively related to temporal variability in water chemistry. For biofilm bacteria, temporal variability was negatively related to variability in temperature. Temporal β-diversity of soil communities did not show any response to stream network position, but was strongly related to variability in the soil environment. The two aquatic habitats and riparian soils supported distinctly different bacterial communities. The number of ASVs shared between the soil and the aquatic communities decreased along the network, and more so for bacterioplankton. The higher temporal variability of bacterial communities in the headwaters likely results from temporally variable input of propagules from riparian soil, emphasizing the role of land-water connection and network position to bacterioplankton community composition. Overall, bacterial communities exhibited high temporal variability, highlighting the importance of temporal replication to fully capture their network-scale biodiversity.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"88 1","pages":"26"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11992004/pdf/","citationCount":"0","resultStr":"{\"title\":\"Temporal Beta Diversity of Bacteria in Streams: Network Position Matters But Differently for Bacterioplankton and Biofilm Communities.\",\"authors\":\"Kaisa-Leena Huttunen, Jacqueline Malazarte, Jussi Jyväsjärvi, Kaisa Lehosmaa, Timo Muotka\",\"doi\":\"10.1007/s00248-025-02522-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Concern about biodiversity loss has yielded a surge of studies on temporal change in α-diversity, whereas temporal β-diversity has gained less interest. We sampled bacterioplankton, biofilm, and riparian soil bacteria repeatedly across the open-water season in a pristine stream network to determine the level of temporal β-diversity in relation to stream network position and environmental variability. We tested the hypothesis that aquatic bacterial communities in isolated and environmentally heterogenous headwaters exhibit high temporal β-diversity while the better-connected and environmentally more stable mainstem sections support more stable communities, and soil communities bear no relationship to network position. As expected, temporal β-diversity decreased from headwaters toward mainstems for bacterioplankton. Against expectations, an opposite pattern was observed for biofilm. For bacterioplankton, temporal β-diversity was positively related to temporal variability in water chemistry. For biofilm bacteria, temporal variability was negatively related to variability in temperature. Temporal β-diversity of soil communities did not show any response to stream network position, but was strongly related to variability in the soil environment. The two aquatic habitats and riparian soils supported distinctly different bacterial communities. The number of ASVs shared between the soil and the aquatic communities decreased along the network, and more so for bacterioplankton. The higher temporal variability of bacterial communities in the headwaters likely results from temporally variable input of propagules from riparian soil, emphasizing the role of land-water connection and network position to bacterioplankton community composition. Overall, bacterial communities exhibited high temporal variability, highlighting the importance of temporal replication to fully capture their network-scale biodiversity.</p>\",\"PeriodicalId\":18708,\"journal\":{\"name\":\"Microbial Ecology\",\"volume\":\"88 1\",\"pages\":\"26\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11992004/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00248-025-02522-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00248-025-02522-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Temporal Beta Diversity of Bacteria in Streams: Network Position Matters But Differently for Bacterioplankton and Biofilm Communities.
Concern about biodiversity loss has yielded a surge of studies on temporal change in α-diversity, whereas temporal β-diversity has gained less interest. We sampled bacterioplankton, biofilm, and riparian soil bacteria repeatedly across the open-water season in a pristine stream network to determine the level of temporal β-diversity in relation to stream network position and environmental variability. We tested the hypothesis that aquatic bacterial communities in isolated and environmentally heterogenous headwaters exhibit high temporal β-diversity while the better-connected and environmentally more stable mainstem sections support more stable communities, and soil communities bear no relationship to network position. As expected, temporal β-diversity decreased from headwaters toward mainstems for bacterioplankton. Against expectations, an opposite pattern was observed for biofilm. For bacterioplankton, temporal β-diversity was positively related to temporal variability in water chemistry. For biofilm bacteria, temporal variability was negatively related to variability in temperature. Temporal β-diversity of soil communities did not show any response to stream network position, but was strongly related to variability in the soil environment. The two aquatic habitats and riparian soils supported distinctly different bacterial communities. The number of ASVs shared between the soil and the aquatic communities decreased along the network, and more so for bacterioplankton. The higher temporal variability of bacterial communities in the headwaters likely results from temporally variable input of propagules from riparian soil, emphasizing the role of land-water connection and network position to bacterioplankton community composition. Overall, bacterial communities exhibited high temporal variability, highlighting the importance of temporal replication to fully capture their network-scale biodiversity.
期刊介绍:
The journal Microbial Ecology was founded more than 50 years ago by Dr. Ralph Mitchell, Gordon McKay Professor of Applied Biology at Harvard University in Cambridge, MA. The journal has evolved to become a premier location for the presentation of manuscripts that represent advances in the field of microbial ecology. The journal has become a dedicated international forum for the presentation of high-quality scientific investigations of how microorganisms interact with their environment, with each other and with their hosts. Microbial Ecology offers articles of original research in full paper and note formats, as well as brief reviews and topical position papers.