Wanqiang Qi, Wenjuan Song, Ran Qi, Ye Li, Hongkui Yang, Yousan Li, Zhide Chang
{"title":"土地利用类型驱动半干旱区土壤细菌和真菌群落的不同模式","authors":"Wanqiang Qi, Wenjuan Song, Ran Qi, Ye Li, Hongkui Yang, Yousan Li, Zhide Chang","doi":"10.1007/s00248-025-02538-9","DOIUrl":null,"url":null,"abstract":"<p><p>Land types and ways of utilization significantly influence soil microbial communities in arid and semi-arid regions, which are vital for nutrient cycling and ecosystem functionality. In this study, the soil bacterial and fungal communities of five land types, including natural grasslands, farmlands, artificial grasslands, uncultivated lands, and riverbeds in the semi-arid lower reaches of the Heihe River, China, were investigated. Farmlands exhibited the highest bacterial Chao1 richness and Shannon diversity, while uncultivated soils had the lowest bacterial Chao1 richness. Fungal diversity was highest in uncultivated soils compared to farmlands. Principal coordinate analysis (PCoA) showed distinct microbial community structures across land types, with Actinobacteria, Proteobacteria, Firmicutes, and Chloroflexi dominating bacterial communities, and Ascomycota and Basidiomycota dominating fungal communities. Life history strategies revealed distinct patterns between bacterial and fungal communities within farmland soils and artificial grassland soils. Microbial community assembly in natural grasslands was primarily deterministic, with limited stochastic influence, while farmlands exhibited mixed assembly processes. Co-occurrence network analysis showed more stable and cooperative microbial networks in natural grasslands, while farmland networks were more competitive and reliant on key species. These findings provide important insights into the role of land use in shaping microbial diversity and ecosystem function, offering guidance for sustainable land management in semi-arid oasis regions.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"88 1","pages":"43"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12065679/pdf/","citationCount":"0","resultStr":"{\"title\":\"Land Use Types Drive the Distinct Patterns of Bacterial and Fungal Communities in Soils from the Semi-arid Area.\",\"authors\":\"Wanqiang Qi, Wenjuan Song, Ran Qi, Ye Li, Hongkui Yang, Yousan Li, Zhide Chang\",\"doi\":\"10.1007/s00248-025-02538-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Land types and ways of utilization significantly influence soil microbial communities in arid and semi-arid regions, which are vital for nutrient cycling and ecosystem functionality. In this study, the soil bacterial and fungal communities of five land types, including natural grasslands, farmlands, artificial grasslands, uncultivated lands, and riverbeds in the semi-arid lower reaches of the Heihe River, China, were investigated. Farmlands exhibited the highest bacterial Chao1 richness and Shannon diversity, while uncultivated soils had the lowest bacterial Chao1 richness. Fungal diversity was highest in uncultivated soils compared to farmlands. Principal coordinate analysis (PCoA) showed distinct microbial community structures across land types, with Actinobacteria, Proteobacteria, Firmicutes, and Chloroflexi dominating bacterial communities, and Ascomycota and Basidiomycota dominating fungal communities. Life history strategies revealed distinct patterns between bacterial and fungal communities within farmland soils and artificial grassland soils. Microbial community assembly in natural grasslands was primarily deterministic, with limited stochastic influence, while farmlands exhibited mixed assembly processes. Co-occurrence network analysis showed more stable and cooperative microbial networks in natural grasslands, while farmland networks were more competitive and reliant on key species. These findings provide important insights into the role of land use in shaping microbial diversity and ecosystem function, offering guidance for sustainable land management in semi-arid oasis regions.</p>\",\"PeriodicalId\":18708,\"journal\":{\"name\":\"Microbial Ecology\",\"volume\":\"88 1\",\"pages\":\"43\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12065679/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00248-025-02538-9\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00248-025-02538-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Land Use Types Drive the Distinct Patterns of Bacterial and Fungal Communities in Soils from the Semi-arid Area.
Land types and ways of utilization significantly influence soil microbial communities in arid and semi-arid regions, which are vital for nutrient cycling and ecosystem functionality. In this study, the soil bacterial and fungal communities of five land types, including natural grasslands, farmlands, artificial grasslands, uncultivated lands, and riverbeds in the semi-arid lower reaches of the Heihe River, China, were investigated. Farmlands exhibited the highest bacterial Chao1 richness and Shannon diversity, while uncultivated soils had the lowest bacterial Chao1 richness. Fungal diversity was highest in uncultivated soils compared to farmlands. Principal coordinate analysis (PCoA) showed distinct microbial community structures across land types, with Actinobacteria, Proteobacteria, Firmicutes, and Chloroflexi dominating bacterial communities, and Ascomycota and Basidiomycota dominating fungal communities. Life history strategies revealed distinct patterns between bacterial and fungal communities within farmland soils and artificial grassland soils. Microbial community assembly in natural grasslands was primarily deterministic, with limited stochastic influence, while farmlands exhibited mixed assembly processes. Co-occurrence network analysis showed more stable and cooperative microbial networks in natural grasslands, while farmland networks were more competitive and reliant on key species. These findings provide important insights into the role of land use in shaping microbial diversity and ecosystem function, offering guidance for sustainable land management in semi-arid oasis regions.
期刊介绍:
The journal Microbial Ecology was founded more than 50 years ago by Dr. Ralph Mitchell, Gordon McKay Professor of Applied Biology at Harvard University in Cambridge, MA. The journal has evolved to become a premier location for the presentation of manuscripts that represent advances in the field of microbial ecology. The journal has become a dedicated international forum for the presentation of high-quality scientific investigations of how microorganisms interact with their environment, with each other and with their hosts. Microbial Ecology offers articles of original research in full paper and note formats, as well as brief reviews and topical position papers.