Faranak Mehrnoosh, Dorsa Rezaei, Seyed Abbas Pakmehr, Paria Ganji Nataj, Mustafa Sattar, Melina Shadi, Payam Ali-Khiavi, Farshad Zare, Ahmed Hjazi, Raed Fanoukh Aboqader Al-Aouadi, Valisher Sapayev, Faranak Zargari, Ali G Alkhathami, Roya Ahmadzadeh, Mohammad Khedmatgozar, Sina Hamzehzadeh
{"title":"人参在神经退行性疾病中的作用:机制、益处和未来方向。","authors":"Faranak Mehrnoosh, Dorsa Rezaei, Seyed Abbas Pakmehr, Paria Ganji Nataj, Mustafa Sattar, Melina Shadi, Payam Ali-Khiavi, Farshad Zare, Ahmed Hjazi, Raed Fanoukh Aboqader Al-Aouadi, Valisher Sapayev, Faranak Zargari, Ali G Alkhathami, Roya Ahmadzadeh, Mohammad Khedmatgozar, Sina Hamzehzadeh","doi":"10.1007/s11011-025-01610-0","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), Multiple sclerosis (MS), and Huntington's disease (HD) represent a growing global health challenge, especially with aging populations. Characterized by progressive neuronal loss, these diseases lead to cognitive, motor, and behavioral impairments, significantly impacting patients' quality of life. Current therapies largely address symptoms without halting disease progression, underscoring the need for innovative, disease-modifying treatments. Ginseng, a traditional herbal medicine with well-known adaptogenic and neuroprotective properties, has gained attention as a potential therapeutic agent for neurodegeneration. Rich in bioactive compounds called ginsenosides, ginseng exhibits antioxidant, anti-inflammatory, and anti-apoptotic effects, making it a promising candidate for addressing the complex pathology of neurodegenerative diseases. Recent studies demonstrate that ginsenosides modulate disease-related processes such as oxidative stress, protein aggregation, mitochondrial dysfunction, and inflammation. In AD models, ginsenosides have been shown to reduce amyloid-beta accumulation and tau hyperphosphorylation, while in PD, they help protect dopaminergic neurons and mitigate motor symptoms. Ginseng's effects in ALS, MS, and HD models include improving motor function, extending neuronal survival, and reducing cellular toxicity. This review provides a comprehensive overview of the neuroprotective mechanisms of ginseng, emphasizing its therapeutic potential across various neurodegenerative diseases and discussing future research directions for its integration into clinical practice.</p>","PeriodicalId":18685,"journal":{"name":"Metabolic brain disease","volume":"40 4","pages":"183"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of Panax ginseng in neurodegenerative disorders: mechanisms, benefits, and future directions.\",\"authors\":\"Faranak Mehrnoosh, Dorsa Rezaei, Seyed Abbas Pakmehr, Paria Ganji Nataj, Mustafa Sattar, Melina Shadi, Payam Ali-Khiavi, Farshad Zare, Ahmed Hjazi, Raed Fanoukh Aboqader Al-Aouadi, Valisher Sapayev, Faranak Zargari, Ali G Alkhathami, Roya Ahmadzadeh, Mohammad Khedmatgozar, Sina Hamzehzadeh\",\"doi\":\"10.1007/s11011-025-01610-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), Multiple sclerosis (MS), and Huntington's disease (HD) represent a growing global health challenge, especially with aging populations. Characterized by progressive neuronal loss, these diseases lead to cognitive, motor, and behavioral impairments, significantly impacting patients' quality of life. Current therapies largely address symptoms without halting disease progression, underscoring the need for innovative, disease-modifying treatments. Ginseng, a traditional herbal medicine with well-known adaptogenic and neuroprotective properties, has gained attention as a potential therapeutic agent for neurodegeneration. Rich in bioactive compounds called ginsenosides, ginseng exhibits antioxidant, anti-inflammatory, and anti-apoptotic effects, making it a promising candidate for addressing the complex pathology of neurodegenerative diseases. Recent studies demonstrate that ginsenosides modulate disease-related processes such as oxidative stress, protein aggregation, mitochondrial dysfunction, and inflammation. In AD models, ginsenosides have been shown to reduce amyloid-beta accumulation and tau hyperphosphorylation, while in PD, they help protect dopaminergic neurons and mitigate motor symptoms. Ginseng's effects in ALS, MS, and HD models include improving motor function, extending neuronal survival, and reducing cellular toxicity. This review provides a comprehensive overview of the neuroprotective mechanisms of ginseng, emphasizing its therapeutic potential across various neurodegenerative diseases and discussing future research directions for its integration into clinical practice.</p>\",\"PeriodicalId\":18685,\"journal\":{\"name\":\"Metabolic brain disease\",\"volume\":\"40 4\",\"pages\":\"183\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic brain disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11011-025-01610-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic brain disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11011-025-01610-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
The role of Panax ginseng in neurodegenerative disorders: mechanisms, benefits, and future directions.
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), Multiple sclerosis (MS), and Huntington's disease (HD) represent a growing global health challenge, especially with aging populations. Characterized by progressive neuronal loss, these diseases lead to cognitive, motor, and behavioral impairments, significantly impacting patients' quality of life. Current therapies largely address symptoms without halting disease progression, underscoring the need for innovative, disease-modifying treatments. Ginseng, a traditional herbal medicine with well-known adaptogenic and neuroprotective properties, has gained attention as a potential therapeutic agent for neurodegeneration. Rich in bioactive compounds called ginsenosides, ginseng exhibits antioxidant, anti-inflammatory, and anti-apoptotic effects, making it a promising candidate for addressing the complex pathology of neurodegenerative diseases. Recent studies demonstrate that ginsenosides modulate disease-related processes such as oxidative stress, protein aggregation, mitochondrial dysfunction, and inflammation. In AD models, ginsenosides have been shown to reduce amyloid-beta accumulation and tau hyperphosphorylation, while in PD, they help protect dopaminergic neurons and mitigate motor symptoms. Ginseng's effects in ALS, MS, and HD models include improving motor function, extending neuronal survival, and reducing cellular toxicity. This review provides a comprehensive overview of the neuroprotective mechanisms of ginseng, emphasizing its therapeutic potential across various neurodegenerative diseases and discussing future research directions for its integration into clinical practice.
期刊介绍:
Metabolic Brain Disease serves as a forum for the publication of outstanding basic and clinical papers on all metabolic brain disease, including both human and animal studies. The journal publishes papers on the fundamental pathogenesis of these disorders and on related experimental and clinical techniques and methodologies. Metabolic Brain Disease is directed to physicians, neuroscientists, internists, psychiatrists, neurologists, pathologists, and others involved in the research and treatment of a broad range of metabolic brain disorders.