Isaac R L Xu, Matt C Danzi, Jacquelyn Raposo, Stephan Züchner
{"title":"基因组技术和软件在神经遗传学中的持续发展前景。","authors":"Isaac R L Xu, Matt C Danzi, Jacquelyn Raposo, Stephan Züchner","doi":"10.1177/22143602251325345","DOIUrl":null,"url":null,"abstract":"<p><p>The continued evolution of genomic technologies over the past few decades has revolutionized the field of neurogenetics, offering profound insights into the genetic underpinnings of neurological disorders. Identification of causal genes for numerous monogenic neurological conditions has informed key aspects of disease mechanisms and facilitated research into critical proteins and molecular pathways, laying the groundwork for therapeutic interventions. However, the question remains: has this transformative trend reached its zenith? In this review, we suggest that despite significant strides in genome sequencing and advanced computational analyses, there is still ample room for methodological refinement. We anticipate further major genetic breakthroughs corresponding with the increased use of long-read genomes, variant calling software, AI tools, and data aggregation databases. Genetic progress has historically been driven by technological advancements from the commercial sector, which are developed in response to academic research needs, creating a continuous cycle of innovation and discovery. This review explores the potential of genomic technologies to address the challenges of neurogenetic disorders. By outlining both established and modern resources, we aim to emphasize the importance of genetic technologies as we enter an era poised for discoveries.</p>","PeriodicalId":16536,"journal":{"name":"Journal of neuromuscular diseases","volume":" ","pages":"22143602251325345"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The continued promise of genomic technologies and software in neurogenetics.\",\"authors\":\"Isaac R L Xu, Matt C Danzi, Jacquelyn Raposo, Stephan Züchner\",\"doi\":\"10.1177/22143602251325345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The continued evolution of genomic technologies over the past few decades has revolutionized the field of neurogenetics, offering profound insights into the genetic underpinnings of neurological disorders. Identification of causal genes for numerous monogenic neurological conditions has informed key aspects of disease mechanisms and facilitated research into critical proteins and molecular pathways, laying the groundwork for therapeutic interventions. However, the question remains: has this transformative trend reached its zenith? In this review, we suggest that despite significant strides in genome sequencing and advanced computational analyses, there is still ample room for methodological refinement. We anticipate further major genetic breakthroughs corresponding with the increased use of long-read genomes, variant calling software, AI tools, and data aggregation databases. Genetic progress has historically been driven by technological advancements from the commercial sector, which are developed in response to academic research needs, creating a continuous cycle of innovation and discovery. This review explores the potential of genomic technologies to address the challenges of neurogenetic disorders. By outlining both established and modern resources, we aim to emphasize the importance of genetic technologies as we enter an era poised for discoveries.</p>\",\"PeriodicalId\":16536,\"journal\":{\"name\":\"Journal of neuromuscular diseases\",\"volume\":\" \",\"pages\":\"22143602251325345\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neuromuscular diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/22143602251325345\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neuromuscular diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/22143602251325345","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
The continued promise of genomic technologies and software in neurogenetics.
The continued evolution of genomic technologies over the past few decades has revolutionized the field of neurogenetics, offering profound insights into the genetic underpinnings of neurological disorders. Identification of causal genes for numerous monogenic neurological conditions has informed key aspects of disease mechanisms and facilitated research into critical proteins and molecular pathways, laying the groundwork for therapeutic interventions. However, the question remains: has this transformative trend reached its zenith? In this review, we suggest that despite significant strides in genome sequencing and advanced computational analyses, there is still ample room for methodological refinement. We anticipate further major genetic breakthroughs corresponding with the increased use of long-read genomes, variant calling software, AI tools, and data aggregation databases. Genetic progress has historically been driven by technological advancements from the commercial sector, which are developed in response to academic research needs, creating a continuous cycle of innovation and discovery. This review explores the potential of genomic technologies to address the challenges of neurogenetic disorders. By outlining both established and modern resources, we aim to emphasize the importance of genetic technologies as we enter an era poised for discoveries.
期刊介绍:
The Journal of Neuromuscular Diseases aims to facilitate progress in understanding the molecular genetics/correlates, pathogenesis, pharmacology, diagnosis and treatment of acquired and genetic neuromuscular diseases (including muscular dystrophy, myasthenia gravis, spinal muscular atrophy, neuropathies, myopathies, myotonias and myositis). The journal publishes research reports, reviews, short communications, letters-to-the-editor, and will consider research that has negative findings. The journal is dedicated to providing an open forum for original research in basic science, translational and clinical research that will improve our fundamental understanding and lead to effective treatments of neuromuscular diseases.