使用生物识别面部和手指静脉数据的深度学习加密密钥生成。

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2025-04-29 eCollection Date: 2025-01-01 DOI:10.3389/frai.2025.1545946
Tsehayu Gizachew Yirga, Hailu Gizachew Yirga, Eshetie Gizachew Addisu
{"title":"使用生物识别面部和手指静脉数据的深度学习加密密钥生成。","authors":"Tsehayu Gizachew Yirga, Hailu Gizachew Yirga, Eshetie Gizachew Addisu","doi":"10.3389/frai.2025.1545946","DOIUrl":null,"url":null,"abstract":"<p><p>This research proposes a novel approach to cryptographic key generation using biometric data from face and finger vein modalities enhanced by deep learning techniques. Using pretrained models FaceNet and VGG19 for feature extraction and employing a Siamese Neural Network (SNN), the study demonstrates the integration of multimodal biometrics with fuzzy extractors to create secure and reproducible cryptographic keys. Feature fusion techniques, combined with preprocessing and thresholding, ensure robust feature extraction and conversion to binary formats for key generation. The model demonstrates impressive accuracy with a vector converter, achieving a sigma similarity of 93% and a sigma difference of 64.0%. Evaluation metrics, including False Acceptance Rate (FAR) and False Rejection Rate (FRR), indicate significant improvements, achieving FRR < 3.4% and FAR < 1%, outperforming previous works. Additionally, the adoption of Goppa code-based cryptographic systems ensures post-quantum security. This study not only enhances biometric cryptography's accuracy and resilience but also paves the way for future exploration of quantum-resistant and scalable systems.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"8 ","pages":"1545946"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12069345/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cryptographic key generation using deep learning with biometric face and finger vein data.\",\"authors\":\"Tsehayu Gizachew Yirga, Hailu Gizachew Yirga, Eshetie Gizachew Addisu\",\"doi\":\"10.3389/frai.2025.1545946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This research proposes a novel approach to cryptographic key generation using biometric data from face and finger vein modalities enhanced by deep learning techniques. Using pretrained models FaceNet and VGG19 for feature extraction and employing a Siamese Neural Network (SNN), the study demonstrates the integration of multimodal biometrics with fuzzy extractors to create secure and reproducible cryptographic keys. Feature fusion techniques, combined with preprocessing and thresholding, ensure robust feature extraction and conversion to binary formats for key generation. The model demonstrates impressive accuracy with a vector converter, achieving a sigma similarity of 93% and a sigma difference of 64.0%. Evaluation metrics, including False Acceptance Rate (FAR) and False Rejection Rate (FRR), indicate significant improvements, achieving FRR < 3.4% and FAR < 1%, outperforming previous works. Additionally, the adoption of Goppa code-based cryptographic systems ensures post-quantum security. This study not only enhances biometric cryptography's accuracy and resilience but also paves the way for future exploration of quantum-resistant and scalable systems.</p>\",\"PeriodicalId\":33315,\"journal\":{\"name\":\"Frontiers in Artificial Intelligence\",\"volume\":\"8 \",\"pages\":\"1545946\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12069345/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frai.2025.1545946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2025.1545946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种新的加密密钥生成方法,该方法使用深度学习技术增强的面部和手指静脉模式的生物识别数据。使用预训练模型FaceNet和VGG19进行特征提取,并采用连体神经网络(SNN),该研究展示了多模态生物识别与模糊提取器的集成,以创建安全且可复制的加密密钥。特征融合技术,结合预处理和阈值处理,确保鲁棒的特征提取和转换为二进制格式的密钥生成。该模型使用矢量转换器显示了令人印象深刻的精度,实现了93%的sigma相似度和64.0%的sigma差。评估指标,包括错误接受率(FAR)和错误拒绝率(FRR),表明了显著的改进,达到了FRR
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cryptographic key generation using deep learning with biometric face and finger vein data.

This research proposes a novel approach to cryptographic key generation using biometric data from face and finger vein modalities enhanced by deep learning techniques. Using pretrained models FaceNet and VGG19 for feature extraction and employing a Siamese Neural Network (SNN), the study demonstrates the integration of multimodal biometrics with fuzzy extractors to create secure and reproducible cryptographic keys. Feature fusion techniques, combined with preprocessing and thresholding, ensure robust feature extraction and conversion to binary formats for key generation. The model demonstrates impressive accuracy with a vector converter, achieving a sigma similarity of 93% and a sigma difference of 64.0%. Evaluation metrics, including False Acceptance Rate (FAR) and False Rejection Rate (FRR), indicate significant improvements, achieving FRR < 3.4% and FAR < 1%, outperforming previous works. Additionally, the adoption of Goppa code-based cryptographic systems ensures post-quantum security. This study not only enhances biometric cryptography's accuracy and resilience but also paves the way for future exploration of quantum-resistant and scalable systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信