Vivian Utti, Vasiliki Bikia, Ank A Agarwal, Roxana Daneshjou
{"title":"将人工智能应用于皮肤病癌症筛查和诊断:疗效、挑战和未来方向。","authors":"Vivian Utti, Vasiliki Bikia, Ank A Agarwal, Roxana Daneshjou","doi":"10.1146/annurev-biodatasci-103123-094521","DOIUrl":null,"url":null,"abstract":"<p><p>Skin cancer is the most common cancer in the United States, with incidence rates continuing to rise both nationally and globally, posing significant health and economic burdens. These challenges are compounded by shortages in dermatological care and barriers to insurance access. To address these gaps, artificial intelligence (AI) and deep learning technologies offer promising solutions, enhancing skin cancer screening and diagnosis. AI has the potential to improve diagnostic accuracy and expand access to care, but significant challenges restrict its deployment. These challenges include clinical validation, algorithmic bias, regulatory oversight, and patient acceptance. Ethical concerns, such as disparities in access and fairness of AI algorithms, also require attention. In this review, we explore these limitations and outline future directions, including advancements in teledermatology and vision-language models (VLMs). Future research should focus on improving VLM reliability and interpretability and developing systems capable of integrating clinical context with dermatological images in a way that assists, rather than replaces, clinicians in making more accurate, timely diagnoses.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Artificial Intelligence in Dermatological Cancer Screening and Diagnosis: Efficacy, Challenges, and Future Directions.\",\"authors\":\"Vivian Utti, Vasiliki Bikia, Ank A Agarwal, Roxana Daneshjou\",\"doi\":\"10.1146/annurev-biodatasci-103123-094521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Skin cancer is the most common cancer in the United States, with incidence rates continuing to rise both nationally and globally, posing significant health and economic burdens. These challenges are compounded by shortages in dermatological care and barriers to insurance access. To address these gaps, artificial intelligence (AI) and deep learning technologies offer promising solutions, enhancing skin cancer screening and diagnosis. AI has the potential to improve diagnostic accuracy and expand access to care, but significant challenges restrict its deployment. These challenges include clinical validation, algorithmic bias, regulatory oversight, and patient acceptance. Ethical concerns, such as disparities in access and fairness of AI algorithms, also require attention. In this review, we explore these limitations and outline future directions, including advancements in teledermatology and vision-language models (VLMs). Future research should focus on improving VLM reliability and interpretability and developing systems capable of integrating clinical context with dermatological images in a way that assists, rather than replaces, clinicians in making more accurate, timely diagnoses.</p>\",\"PeriodicalId\":29775,\"journal\":{\"name\":\"Annual Review of Biomedical Data Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biomedical Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-biodatasci-103123-094521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-biodatasci-103123-094521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Integrating Artificial Intelligence in Dermatological Cancer Screening and Diagnosis: Efficacy, Challenges, and Future Directions.
Skin cancer is the most common cancer in the United States, with incidence rates continuing to rise both nationally and globally, posing significant health and economic burdens. These challenges are compounded by shortages in dermatological care and barriers to insurance access. To address these gaps, artificial intelligence (AI) and deep learning technologies offer promising solutions, enhancing skin cancer screening and diagnosis. AI has the potential to improve diagnostic accuracy and expand access to care, but significant challenges restrict its deployment. These challenges include clinical validation, algorithmic bias, regulatory oversight, and patient acceptance. Ethical concerns, such as disparities in access and fairness of AI algorithms, also require attention. In this review, we explore these limitations and outline future directions, including advancements in teledermatology and vision-language models (VLMs). Future research should focus on improving VLM reliability and interpretability and developing systems capable of integrating clinical context with dermatological images in a way that assists, rather than replaces, clinicians in making more accurate, timely diagnoses.
期刊介绍:
The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.