将人工智能应用于皮肤病癌症筛查和诊断:疗效、挑战和未来方向。

IF 7 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Vivian Utti, Vasiliki Bikia, Ank A Agarwal, Roxana Daneshjou
{"title":"将人工智能应用于皮肤病癌症筛查和诊断:疗效、挑战和未来方向。","authors":"Vivian Utti, Vasiliki Bikia, Ank A Agarwal, Roxana Daneshjou","doi":"10.1146/annurev-biodatasci-103123-094521","DOIUrl":null,"url":null,"abstract":"<p><p>Skin cancer is the most common cancer in the United States, with incidence rates continuing to rise both nationally and globally, posing significant health and economic burdens. These challenges are compounded by shortages in dermatological care and barriers to insurance access. To address these gaps, artificial intelligence (AI) and deep learning technologies offer promising solutions, enhancing skin cancer screening and diagnosis. AI has the potential to improve diagnostic accuracy and expand access to care, but significant challenges restrict its deployment. These challenges include clinical validation, algorithmic bias, regulatory oversight, and patient acceptance. Ethical concerns, such as disparities in access and fairness of AI algorithms, also require attention. In this review, we explore these limitations and outline future directions, including advancements in teledermatology and vision-language models (VLMs). Future research should focus on improving VLM reliability and interpretability and developing systems capable of integrating clinical context with dermatological images in a way that assists, rather than replaces, clinicians in making more accurate, timely diagnoses.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Artificial Intelligence in Dermatological Cancer Screening and Diagnosis: Efficacy, Challenges, and Future Directions.\",\"authors\":\"Vivian Utti, Vasiliki Bikia, Ank A Agarwal, Roxana Daneshjou\",\"doi\":\"10.1146/annurev-biodatasci-103123-094521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Skin cancer is the most common cancer in the United States, with incidence rates continuing to rise both nationally and globally, posing significant health and economic burdens. These challenges are compounded by shortages in dermatological care and barriers to insurance access. To address these gaps, artificial intelligence (AI) and deep learning technologies offer promising solutions, enhancing skin cancer screening and diagnosis. AI has the potential to improve diagnostic accuracy and expand access to care, but significant challenges restrict its deployment. These challenges include clinical validation, algorithmic bias, regulatory oversight, and patient acceptance. Ethical concerns, such as disparities in access and fairness of AI algorithms, also require attention. In this review, we explore these limitations and outline future directions, including advancements in teledermatology and vision-language models (VLMs). Future research should focus on improving VLM reliability and interpretability and developing systems capable of integrating clinical context with dermatological images in a way that assists, rather than replaces, clinicians in making more accurate, timely diagnoses.</p>\",\"PeriodicalId\":29775,\"journal\":{\"name\":\"Annual Review of Biomedical Data Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biomedical Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-biodatasci-103123-094521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-biodatasci-103123-094521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

皮肤癌是美国最常见的癌症,其发病率在全国和全球范围内都在持续上升,造成了重大的健康和经济负担。皮肤科护理的短缺和获得保险的障碍使这些挑战更加复杂。为了弥补这些差距,人工智能(AI)和深度学习技术提供了有前途的解决方案,加强了皮肤癌的筛查和诊断。人工智能具有提高诊断准确性和扩大医疗服务可及性的潜力,但重大挑战限制了其部署。这些挑战包括临床验证、算法偏差、监管监督和患者接受度。人工智能算法在获取和公平性方面的差异等伦理问题也需要关注。在这篇综述中,我们探讨了这些局限性并概述了未来的发展方向,包括远程皮肤病学和视觉语言模型(VLMs)的进展。未来的研究应侧重于提高VLM的可靠性和可解释性,并开发能够将临床背景与皮肤科图像相结合的系统,以帮助而不是取代临床医生做出更准确、及时的诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating Artificial Intelligence in Dermatological Cancer Screening and Diagnosis: Efficacy, Challenges, and Future Directions.

Skin cancer is the most common cancer in the United States, with incidence rates continuing to rise both nationally and globally, posing significant health and economic burdens. These challenges are compounded by shortages in dermatological care and barriers to insurance access. To address these gaps, artificial intelligence (AI) and deep learning technologies offer promising solutions, enhancing skin cancer screening and diagnosis. AI has the potential to improve diagnostic accuracy and expand access to care, but significant challenges restrict its deployment. These challenges include clinical validation, algorithmic bias, regulatory oversight, and patient acceptance. Ethical concerns, such as disparities in access and fairness of AI algorithms, also require attention. In this review, we explore these limitations and outline future directions, including advancements in teledermatology and vision-language models (VLMs). Future research should focus on improving VLM reliability and interpretability and developing systems capable of integrating clinical context with dermatological images in a way that assists, rather than replaces, clinicians in making more accurate, timely diagnoses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.10
自引率
1.70%
发文量
0
期刊介绍: The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信