{"title":"范式转移-基于注意力的混合视图学习在多尺度和多视图融合增强乳房x线摄影乳腺癌分类中的应用。","authors":"Haoran Zhao, Chengwei Zhang, Jiong Chen, Zhaotong Li, Fei Wang, Song Gao","doi":"10.1109/JBHI.2025.3569726","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer poses a serious threat to women's health, and its early detection is crucial for enhancing patient survival rates. While deep learning has significantly advanced mammographic image analysis, existing methods struggle to balance between view consistency with input adaptability. Furthermore, current models face challenges in accurately capturing multi-scale features, especially when subtle lesion variations across different scales are involved. To address this challenge, this paper proposes a Hybrid View Learning (HVL) paradigm that unifies traditional Single-View and Multi-View Learning approaches. The core component of this paradigm, our Attention-based Hybrid View Learning (AHVL) framework, incorporates two essential attention mechanisms: Contrastive Switch Attention (CSA) and Selective Pooling Attention (SPA). The CSA mechanism flexibly alternates between self-attention and cross-attention based on data integrity, integrating a pre-trained language model for contrastive learning to enhance model stability. Meanwhile, the SPA module employs multi-scale feature pooling and selection to capture critical features from mammographic images, overcoming the limitations of traditional models that struggle with fine-grained lesion detection. Experimental validation on the INbreast and CBIS-DDSM datasets shows that the AHVL framework outperforms both single-view and multi-view methods, especially under extreme view missing conditions. Even with an 80% missing rate on both datasets, AHVL maintains the highest accuracy and experiences the smallest performance decline in metrics like F1 score and AUC-PR, demonstrating its robustness and stability. This study redefines mammographic image analysis by leveraging attention-based hybrid view processing, setting a new standard for precise and efficient breast cancer diagnosis.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Paradigm-Shifting Attention-based Hybrid View Learning for Enhanced Mammography Breast Cancer Classification with Multi-Scale and Multi-View Fusion.\",\"authors\":\"Haoran Zhao, Chengwei Zhang, Jiong Chen, Zhaotong Li, Fei Wang, Song Gao\",\"doi\":\"10.1109/JBHI.2025.3569726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer poses a serious threat to women's health, and its early detection is crucial for enhancing patient survival rates. While deep learning has significantly advanced mammographic image analysis, existing methods struggle to balance between view consistency with input adaptability. Furthermore, current models face challenges in accurately capturing multi-scale features, especially when subtle lesion variations across different scales are involved. To address this challenge, this paper proposes a Hybrid View Learning (HVL) paradigm that unifies traditional Single-View and Multi-View Learning approaches. The core component of this paradigm, our Attention-based Hybrid View Learning (AHVL) framework, incorporates two essential attention mechanisms: Contrastive Switch Attention (CSA) and Selective Pooling Attention (SPA). The CSA mechanism flexibly alternates between self-attention and cross-attention based on data integrity, integrating a pre-trained language model for contrastive learning to enhance model stability. Meanwhile, the SPA module employs multi-scale feature pooling and selection to capture critical features from mammographic images, overcoming the limitations of traditional models that struggle with fine-grained lesion detection. Experimental validation on the INbreast and CBIS-DDSM datasets shows that the AHVL framework outperforms both single-view and multi-view methods, especially under extreme view missing conditions. Even with an 80% missing rate on both datasets, AHVL maintains the highest accuracy and experiences the smallest performance decline in metrics like F1 score and AUC-PR, demonstrating its robustness and stability. This study redefines mammographic image analysis by leveraging attention-based hybrid view processing, setting a new standard for precise and efficient breast cancer diagnosis.</p>\",\"PeriodicalId\":13073,\"journal\":{\"name\":\"IEEE Journal of Biomedical and Health Informatics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Biomedical and Health Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/JBHI.2025.3569726\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3569726","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Paradigm-Shifting Attention-based Hybrid View Learning for Enhanced Mammography Breast Cancer Classification with Multi-Scale and Multi-View Fusion.
Breast cancer poses a serious threat to women's health, and its early detection is crucial for enhancing patient survival rates. While deep learning has significantly advanced mammographic image analysis, existing methods struggle to balance between view consistency with input adaptability. Furthermore, current models face challenges in accurately capturing multi-scale features, especially when subtle lesion variations across different scales are involved. To address this challenge, this paper proposes a Hybrid View Learning (HVL) paradigm that unifies traditional Single-View and Multi-View Learning approaches. The core component of this paradigm, our Attention-based Hybrid View Learning (AHVL) framework, incorporates two essential attention mechanisms: Contrastive Switch Attention (CSA) and Selective Pooling Attention (SPA). The CSA mechanism flexibly alternates between self-attention and cross-attention based on data integrity, integrating a pre-trained language model for contrastive learning to enhance model stability. Meanwhile, the SPA module employs multi-scale feature pooling and selection to capture critical features from mammographic images, overcoming the limitations of traditional models that struggle with fine-grained lesion detection. Experimental validation on the INbreast and CBIS-DDSM datasets shows that the AHVL framework outperforms both single-view and multi-view methods, especially under extreme view missing conditions. Even with an 80% missing rate on both datasets, AHVL maintains the highest accuracy and experiences the smallest performance decline in metrics like F1 score and AUC-PR, demonstrating its robustness and stability. This study redefines mammographic image analysis by leveraging attention-based hybrid view processing, setting a new standard for precise and efficient breast cancer diagnosis.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.