Sana Mumtaz Sheikh, Julia Staab, Martina Bleyer, Aleksandar Ivetic, Fred Lühder, Oliver Wirths, Thomas Meyer
{"title":"STAT1转录因子n端截断通过上调stat3介导的致癌功能导致CD3-和cd20阴性非霍奇金淋巴瘤。","authors":"Sana Mumtaz Sheikh, Julia Staab, Martina Bleyer, Aleksandar Ivetic, Fred Lühder, Oliver Wirths, Thomas Meyer","doi":"10.1186/s12964-025-02183-2","DOIUrl":null,"url":null,"abstract":"<p><p>The cytokine-driven transcription factor STAT1 (signal transducer and activator of transcription 1) executes anti-microbial and pro-apoptotic functions, and loss-of-function mutations are associated with increased susceptibility to various infections and the development of tumors. A targeted mutation in mice expressing an N-terminally truncated STAT1 protein (STAT1-ΔN) typically develops splenomegaly in animals older than 6 months due to the formation of splenic non-Hodgkin lymphomas. The expression of the STAT1-ΔN variant resulted in the disruption of normal spleen architecture by malignant CD3- and CD20-negative tumor cells, which stained positively for both tyrosine-phosphorylated STAT1 and STAT3. Immunoblotting of lysates from isolated tumor cells revealed the cytokine-independent hyperphosphorylation of both STAT proteins, whereas the expression level of NF-κB was significantly reduced. Gel-shift assays showed that the DNA-binding activity of STAT1-ΔN was increased compared to the wild-type protein. This elevated level of tyrosine-phosphorylated STAT1-ΔN did not further increase upon stimulation of isolated tumor cells with either interferon-γ (IFNγ), lipopolysaccharide (LPS), or the combination of both. Since the truncation mutant was unable to accumulate in the nucleus upon cytokine stimulation, real-time PCR data from tumor tissue as well as from isolated, IFNγ/LPS-treated lymphoma cells demonstrated significantly reduced STAT1-regulated target gene expression despite its observed hyperphosphorylation. The nuclear import defect of tyrosine-phosphorylated STAT1-ΔN was associated with an elevated tyrosine-phosphorylation level of its antagonistic homolog STAT3, which is a known oncogene. These data demonstrate that the lack of STAT1 nuclear accumulation interferes with the functional balance between the two STAT proteins and, thereby, promotes the formation of phospho-STAT3-expressing CD3<sup>-/-</sup> CD20<sup>-/-</sup> non-Hodgkin lymphomas in the spleens of the diseased animals.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"201"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12034123/pdf/","citationCount":"0","resultStr":"{\"title\":\"N-terminal truncation of STAT1 transcription factor causes CD3- and CD20-negative non-Hodgkin lymphoma through upregulation of STAT3-mediated oncogenic functions.\",\"authors\":\"Sana Mumtaz Sheikh, Julia Staab, Martina Bleyer, Aleksandar Ivetic, Fred Lühder, Oliver Wirths, Thomas Meyer\",\"doi\":\"10.1186/s12964-025-02183-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cytokine-driven transcription factor STAT1 (signal transducer and activator of transcription 1) executes anti-microbial and pro-apoptotic functions, and loss-of-function mutations are associated with increased susceptibility to various infections and the development of tumors. A targeted mutation in mice expressing an N-terminally truncated STAT1 protein (STAT1-ΔN) typically develops splenomegaly in animals older than 6 months due to the formation of splenic non-Hodgkin lymphomas. The expression of the STAT1-ΔN variant resulted in the disruption of normal spleen architecture by malignant CD3- and CD20-negative tumor cells, which stained positively for both tyrosine-phosphorylated STAT1 and STAT3. Immunoblotting of lysates from isolated tumor cells revealed the cytokine-independent hyperphosphorylation of both STAT proteins, whereas the expression level of NF-κB was significantly reduced. Gel-shift assays showed that the DNA-binding activity of STAT1-ΔN was increased compared to the wild-type protein. This elevated level of tyrosine-phosphorylated STAT1-ΔN did not further increase upon stimulation of isolated tumor cells with either interferon-γ (IFNγ), lipopolysaccharide (LPS), or the combination of both. Since the truncation mutant was unable to accumulate in the nucleus upon cytokine stimulation, real-time PCR data from tumor tissue as well as from isolated, IFNγ/LPS-treated lymphoma cells demonstrated significantly reduced STAT1-regulated target gene expression despite its observed hyperphosphorylation. The nuclear import defect of tyrosine-phosphorylated STAT1-ΔN was associated with an elevated tyrosine-phosphorylation level of its antagonistic homolog STAT3, which is a known oncogene. These data demonstrate that the lack of STAT1 nuclear accumulation interferes with the functional balance between the two STAT proteins and, thereby, promotes the formation of phospho-STAT3-expressing CD3<sup>-/-</sup> CD20<sup>-/-</sup> non-Hodgkin lymphomas in the spleens of the diseased animals.</p>\",\"PeriodicalId\":55268,\"journal\":{\"name\":\"Cell Communication and Signaling\",\"volume\":\"23 1\",\"pages\":\"201\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12034123/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Communication and Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12964-025-02183-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-025-02183-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
N-terminal truncation of STAT1 transcription factor causes CD3- and CD20-negative non-Hodgkin lymphoma through upregulation of STAT3-mediated oncogenic functions.
The cytokine-driven transcription factor STAT1 (signal transducer and activator of transcription 1) executes anti-microbial and pro-apoptotic functions, and loss-of-function mutations are associated with increased susceptibility to various infections and the development of tumors. A targeted mutation in mice expressing an N-terminally truncated STAT1 protein (STAT1-ΔN) typically develops splenomegaly in animals older than 6 months due to the formation of splenic non-Hodgkin lymphomas. The expression of the STAT1-ΔN variant resulted in the disruption of normal spleen architecture by malignant CD3- and CD20-negative tumor cells, which stained positively for both tyrosine-phosphorylated STAT1 and STAT3. Immunoblotting of lysates from isolated tumor cells revealed the cytokine-independent hyperphosphorylation of both STAT proteins, whereas the expression level of NF-κB was significantly reduced. Gel-shift assays showed that the DNA-binding activity of STAT1-ΔN was increased compared to the wild-type protein. This elevated level of tyrosine-phosphorylated STAT1-ΔN did not further increase upon stimulation of isolated tumor cells with either interferon-γ (IFNγ), lipopolysaccharide (LPS), or the combination of both. Since the truncation mutant was unable to accumulate in the nucleus upon cytokine stimulation, real-time PCR data from tumor tissue as well as from isolated, IFNγ/LPS-treated lymphoma cells demonstrated significantly reduced STAT1-regulated target gene expression despite its observed hyperphosphorylation. The nuclear import defect of tyrosine-phosphorylated STAT1-ΔN was associated with an elevated tyrosine-phosphorylation level of its antagonistic homolog STAT3, which is a known oncogene. These data demonstrate that the lack of STAT1 nuclear accumulation interferes with the functional balance between the two STAT proteins and, thereby, promotes the formation of phospho-STAT3-expressing CD3-/- CD20-/- non-Hodgkin lymphomas in the spleens of the diseased animals.
期刊介绍:
Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior.
Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.