Lucas E Sainburg, Joseph Hoang, Derek J Doss, Virginia Berry, Alexandra Roche, Andre H Lagrange, Todd E Peterson, Gary T Smith, Dario J Englot, Victoria L Morgan
{"title":"手术靶向侧化18f -氟脱氧葡萄糖正电子发射断层扫描降低代谢与长期癫痫手术结果相关。","authors":"Lucas E Sainburg, Joseph Hoang, Derek J Doss, Virginia Berry, Alexandra Roche, Andre H Lagrange, Todd E Peterson, Gary T Smith, Dario J Englot, Victoria L Morgan","doi":"10.1111/epi.18402","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Surgical resection of the seizure onset zone can be an effective treatment for patients with drug-resistant focal epilepsy. Clinical, electrophysiological, and imaging data are all gathered prior to surgery to localize the seizure onset zone. However, only ~62% of patients become seizure-free after surgery, highlighting the need for improved methods to prospectively predict seizure recurrence after resection. <sup>18</sup>F-Fluorodeoxyglucose (FDG) positron emission tomography (PET) is routinely acquired to guide epilepsy surgery; however, these scans are often assessed qualitatively in the clinic. Here, we quantified the surgical targeting of lateralized FDG-PET hypometabolism and assessed its relationship to surgical outcomes.</p><p><strong>Methods: </strong>We included 55 patients who underwent resective epilepsy surgery (46 with temporal lobe epilepsy). We calculated laterality of the patients' presurgical FDG-PET scans and used pre- and postsurgical magnetic resonance imaging to delineate the surgically resected regions. Surgical targeting of FDG-PET laterality was computed using the discriminability between resected and spared regions statistic.</p><p><strong>Results: </strong>We found that surgical targeting of FDG-PET laterality could distinguish temporal lobe epilepsy patients who achieve freedom from disabling seizures in the long term (3 years) from those who do not (area under the curve [AUC] = .83), outperforming the standard clinical assessment (AUC = .68). We additionally found that this method generalized to the nine patients with extratemporal lobe focal epilepsy.</p><p><strong>Significance: </strong>This study highlights the benefit of quantifying FDG-PET to guide epilepsy surgery. The presented quantitative FDG-PET method could be used prospectively in the clinic to aid in surgical guidance and patient counseling.</p>","PeriodicalId":11768,"journal":{"name":"Epilepsia","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surgical targeting of lateralized <sup>18</sup>F-fluorodeoxyglucose positron emission tomography hypometabolism relates to long-term epilepsy surgery outcomes.\",\"authors\":\"Lucas E Sainburg, Joseph Hoang, Derek J Doss, Virginia Berry, Alexandra Roche, Andre H Lagrange, Todd E Peterson, Gary T Smith, Dario J Englot, Victoria L Morgan\",\"doi\":\"10.1111/epi.18402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Surgical resection of the seizure onset zone can be an effective treatment for patients with drug-resistant focal epilepsy. Clinical, electrophysiological, and imaging data are all gathered prior to surgery to localize the seizure onset zone. However, only ~62% of patients become seizure-free after surgery, highlighting the need for improved methods to prospectively predict seizure recurrence after resection. <sup>18</sup>F-Fluorodeoxyglucose (FDG) positron emission tomography (PET) is routinely acquired to guide epilepsy surgery; however, these scans are often assessed qualitatively in the clinic. Here, we quantified the surgical targeting of lateralized FDG-PET hypometabolism and assessed its relationship to surgical outcomes.</p><p><strong>Methods: </strong>We included 55 patients who underwent resective epilepsy surgery (46 with temporal lobe epilepsy). We calculated laterality of the patients' presurgical FDG-PET scans and used pre- and postsurgical magnetic resonance imaging to delineate the surgically resected regions. Surgical targeting of FDG-PET laterality was computed using the discriminability between resected and spared regions statistic.</p><p><strong>Results: </strong>We found that surgical targeting of FDG-PET laterality could distinguish temporal lobe epilepsy patients who achieve freedom from disabling seizures in the long term (3 years) from those who do not (area under the curve [AUC] = .83), outperforming the standard clinical assessment (AUC = .68). We additionally found that this method generalized to the nine patients with extratemporal lobe focal epilepsy.</p><p><strong>Significance: </strong>This study highlights the benefit of quantifying FDG-PET to guide epilepsy surgery. The presented quantitative FDG-PET method could be used prospectively in the clinic to aid in surgical guidance and patient counseling.</p>\",\"PeriodicalId\":11768,\"journal\":{\"name\":\"Epilepsia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epilepsia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/epi.18402\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/epi.18402","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Surgical targeting of lateralized 18F-fluorodeoxyglucose positron emission tomography hypometabolism relates to long-term epilepsy surgery outcomes.
Objective: Surgical resection of the seizure onset zone can be an effective treatment for patients with drug-resistant focal epilepsy. Clinical, electrophysiological, and imaging data are all gathered prior to surgery to localize the seizure onset zone. However, only ~62% of patients become seizure-free after surgery, highlighting the need for improved methods to prospectively predict seizure recurrence after resection. 18F-Fluorodeoxyglucose (FDG) positron emission tomography (PET) is routinely acquired to guide epilepsy surgery; however, these scans are often assessed qualitatively in the clinic. Here, we quantified the surgical targeting of lateralized FDG-PET hypometabolism and assessed its relationship to surgical outcomes.
Methods: We included 55 patients who underwent resective epilepsy surgery (46 with temporal lobe epilepsy). We calculated laterality of the patients' presurgical FDG-PET scans and used pre- and postsurgical magnetic resonance imaging to delineate the surgically resected regions. Surgical targeting of FDG-PET laterality was computed using the discriminability between resected and spared regions statistic.
Results: We found that surgical targeting of FDG-PET laterality could distinguish temporal lobe epilepsy patients who achieve freedom from disabling seizures in the long term (3 years) from those who do not (area under the curve [AUC] = .83), outperforming the standard clinical assessment (AUC = .68). We additionally found that this method generalized to the nine patients with extratemporal lobe focal epilepsy.
Significance: This study highlights the benefit of quantifying FDG-PET to guide epilepsy surgery. The presented quantitative FDG-PET method could be used prospectively in the clinic to aid in surgical guidance and patient counseling.
期刊介绍:
Epilepsia is the leading, authoritative source for innovative clinical and basic science research for all aspects of epilepsy and seizures. In addition, Epilepsia publishes critical reviews, opinion pieces, and guidelines that foster understanding and aim to improve the diagnosis and treatment of people with seizures and epilepsy.