基于水印协议的IoMT肾结石分割。

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Parkala Vishnu Bharadwaj Bayari, Nishtha Tomar, Gaurav Bhatnagar, Chiranjoy Chattopadhyay
{"title":"基于水印协议的IoMT肾结石分割。","authors":"Parkala Vishnu Bharadwaj Bayari, Nishtha Tomar, Gaurav Bhatnagar, Chiranjoy Chattopadhyay","doi":"10.1109/JBHI.2025.3563955","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid explosion of medical data, exarcebated by the demands of smart healthcare, poses significant challenges for authentication and integrity verification. Moreover, the surge in cybercrime targeting healthcare data jeopardizes patient privacy, compromising both trust and diagnostic reliability. To address these concerns, we propose a robust healthcare system that integrates a kidney stone segmentation framework with a watermarking protocol tailored for Internet of Medical Things (IoMT) applications. Drawing upon patient information and biometrics, chaotic keys are generated for obfuscation and randomization, along with the watermark for integrity verification and authentication. The watermark is imperceptibly embedded into the obfuscated medical image using Singular Value Decomposition (SVD) and adaptive quantization, followed by randomization. Upon reception, successful watermark extraction and verification ensure secure access to unaltered medical data, enabling precise segmentation. To facilitate this, a ResNeXt-50 inspired encoder and attention-guided decoder are introduced within the U-Net architecture to enhance comprehensive feature learning. The effectiveness and practicality of the proposed system have been evaluated through comprehensive experiments on kidney CT scans. Comparative analysis with state-of-the-art techniques highlights its superior performance.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Watermarking Protocol Inspired Kidney Stone Segmentation in IoMT.\",\"authors\":\"Parkala Vishnu Bharadwaj Bayari, Nishtha Tomar, Gaurav Bhatnagar, Chiranjoy Chattopadhyay\",\"doi\":\"10.1109/JBHI.2025.3563955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rapid explosion of medical data, exarcebated by the demands of smart healthcare, poses significant challenges for authentication and integrity verification. Moreover, the surge in cybercrime targeting healthcare data jeopardizes patient privacy, compromising both trust and diagnostic reliability. To address these concerns, we propose a robust healthcare system that integrates a kidney stone segmentation framework with a watermarking protocol tailored for Internet of Medical Things (IoMT) applications. Drawing upon patient information and biometrics, chaotic keys are generated for obfuscation and randomization, along with the watermark for integrity verification and authentication. The watermark is imperceptibly embedded into the obfuscated medical image using Singular Value Decomposition (SVD) and adaptive quantization, followed by randomization. Upon reception, successful watermark extraction and verification ensure secure access to unaltered medical data, enabling precise segmentation. To facilitate this, a ResNeXt-50 inspired encoder and attention-guided decoder are introduced within the U-Net architecture to enhance comprehensive feature learning. The effectiveness and practicality of the proposed system have been evaluated through comprehensive experiments on kidney CT scans. Comparative analysis with state-of-the-art techniques highlights its superior performance.</p>\",\"PeriodicalId\":13073,\"journal\":{\"name\":\"IEEE Journal of Biomedical and Health Informatics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Biomedical and Health Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/JBHI.2025.3563955\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3563955","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

由于智能医疗的需求,医疗数据的快速爆炸对身份验证和完整性验证提出了重大挑战。此外,针对医疗数据的网络犯罪激增,危害了患者隐私,损害了信任和诊断的可靠性。为了解决这些问题,我们提出了一个强大的医疗保健系统,该系统集成了肾结石分割框架和为医疗物联网(IoMT)应用量身定制的水印协议。利用患者信息和生物特征,生成用于混淆和随机化的混沌密钥,以及用于完整性验证和身份验证的水印。利用奇异值分解(SVD)和自适应量化,再进行随机化处理,将水印无形地嵌入到混淆后的医学图像中。接收后,成功的水印提取和验证确保安全访问未更改的医疗数据,实现精确分割。为了促进这一点,U-Net架构中引入了ResNeXt-50启发的编码器和注意力引导解码器,以增强全面的特征学习。通过肾脏CT扫描的综合实验,评估了该系统的有效性和实用性。与最先进的技术对比分析,突出其优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Watermarking Protocol Inspired Kidney Stone Segmentation in IoMT.

The rapid explosion of medical data, exarcebated by the demands of smart healthcare, poses significant challenges for authentication and integrity verification. Moreover, the surge in cybercrime targeting healthcare data jeopardizes patient privacy, compromising both trust and diagnostic reliability. To address these concerns, we propose a robust healthcare system that integrates a kidney stone segmentation framework with a watermarking protocol tailored for Internet of Medical Things (IoMT) applications. Drawing upon patient information and biometrics, chaotic keys are generated for obfuscation and randomization, along with the watermark for integrity verification and authentication. The watermark is imperceptibly embedded into the obfuscated medical image using Singular Value Decomposition (SVD) and adaptive quantization, followed by randomization. Upon reception, successful watermark extraction and verification ensure secure access to unaltered medical data, enabling precise segmentation. To facilitate this, a ResNeXt-50 inspired encoder and attention-guided decoder are introduced within the U-Net architecture to enhance comprehensive feature learning. The effectiveness and practicality of the proposed system have been evaluated through comprehensive experiments on kidney CT scans. Comparative analysis with state-of-the-art techniques highlights its superior performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信