{"title":"配对数据分析。","authors":"Jeffrey Michael Franc","doi":"10.1017/S1049023X25001517","DOIUrl":null,"url":null,"abstract":"<p><p>A common and unfortunate error in statistical analysis is the failure to account for dependencies in the data. In many studies, there is a set of individual participants or experimental objects where two observations are made on each individual or object. This leads to a natural pairing of data. This editorial discusses common situations where paired data arises and gives guidance on selecting the correct analysis plan to avoid statistical errors.</p>","PeriodicalId":20400,"journal":{"name":"Prehospital and Disaster Medicine","volume":"40 2","pages":"61-63"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Paired Data.\",\"authors\":\"Jeffrey Michael Franc\",\"doi\":\"10.1017/S1049023X25001517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A common and unfortunate error in statistical analysis is the failure to account for dependencies in the data. In many studies, there is a set of individual participants or experimental objects where two observations are made on each individual or object. This leads to a natural pairing of data. This editorial discusses common situations where paired data arises and gives guidance on selecting the correct analysis plan to avoid statistical errors.</p>\",\"PeriodicalId\":20400,\"journal\":{\"name\":\"Prehospital and Disaster Medicine\",\"volume\":\"40 2\",\"pages\":\"61-63\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prehospital and Disaster Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1017/S1049023X25001517\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"EMERGENCY MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prehospital and Disaster Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S1049023X25001517","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"EMERGENCY MEDICINE","Score":null,"Total":0}
A common and unfortunate error in statistical analysis is the failure to account for dependencies in the data. In many studies, there is a set of individual participants or experimental objects where two observations are made on each individual or object. This leads to a natural pairing of data. This editorial discusses common situations where paired data arises and gives guidance on selecting the correct analysis plan to avoid statistical errors.
期刊介绍:
Prehospital and Disaster Medicine (PDM) is an official publication of the World Association for Disaster and Emergency Medicine. Currently in its 25th volume, Prehospital and Disaster Medicine is one of the leading scientific journals focusing on prehospital and disaster health. It is the only peer-reviewed international journal in its field, published bi-monthly, providing a readable, usable worldwide source of research and analysis. PDM is currently distributed in more than 55 countries. Its readership includes physicians, professors, EMTs and paramedics, nurses, emergency managers, disaster planners, hospital administrators, sociologists, and psychologists.