{"title":"高通量荧光成像技术在新药发现中的应用综述。","authors":"Michael Ronzetti, Anton Simeonov","doi":"10.1080/17460441.2025.2499123","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>High-throughput fluorescence imaging (HTFI) is revolutionizing drug discovery by enabling rapid and precise detection of biological targets and cellular processes. Recent advances in fluorescence imaging technologies now provide unprecedented sensitivity, resolution, and throughput. Integration of artificial intelligence (AI) and machine learning (ML) into HTFI workflows significantly enhances data processing, aiding in hit identification, pattern recognition, and mechanistic understanding.</p><p><strong>Areas covered: </strong>This review outlines recent technological developments, integration strategies, and emerging applications of HTFI. It emphasizes HTFI's role in phenotypic screening, especially for complex diseases such as cancer, neurodegenerative disorders, and viral infections. Additionally, it highlights advances in 3D culture systems, organoids, and organ-on-a-chip technologies, which facilitate physiologically relevant testing, improved predictive accuracy, and translational potential, alongside innovative molecular probes and biosensors.</p><p><strong>Expert opinion: </strong>Despite its advancements, HTFI faces ongoing challenges, including data standardization, integration with multi-omics approaches, and scalability of advanced models. However, recent progress in organoid and 3D modeling technologies has enhanced the physiological relevance of HTFI assays, complemented by sophisticated AI and ML-driven data analysis techniques.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"785-797"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105877/pdf/","citationCount":"0","resultStr":"{\"title\":\"A comprehensive update on the application of high-throughput fluorescence imaging for novel drug discovery.\",\"authors\":\"Michael Ronzetti, Anton Simeonov\",\"doi\":\"10.1080/17460441.2025.2499123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>High-throughput fluorescence imaging (HTFI) is revolutionizing drug discovery by enabling rapid and precise detection of biological targets and cellular processes. Recent advances in fluorescence imaging technologies now provide unprecedented sensitivity, resolution, and throughput. Integration of artificial intelligence (AI) and machine learning (ML) into HTFI workflows significantly enhances data processing, aiding in hit identification, pattern recognition, and mechanistic understanding.</p><p><strong>Areas covered: </strong>This review outlines recent technological developments, integration strategies, and emerging applications of HTFI. It emphasizes HTFI's role in phenotypic screening, especially for complex diseases such as cancer, neurodegenerative disorders, and viral infections. Additionally, it highlights advances in 3D culture systems, organoids, and organ-on-a-chip technologies, which facilitate physiologically relevant testing, improved predictive accuracy, and translational potential, alongside innovative molecular probes and biosensors.</p><p><strong>Expert opinion: </strong>Despite its advancements, HTFI faces ongoing challenges, including data standardization, integration with multi-omics approaches, and scalability of advanced models. However, recent progress in organoid and 3D modeling technologies has enhanced the physiological relevance of HTFI assays, complemented by sophisticated AI and ML-driven data analysis techniques.</p>\",\"PeriodicalId\":12267,\"journal\":{\"name\":\"Expert Opinion on Drug Discovery\",\"volume\":\" \",\"pages\":\"785-797\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105877/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Opinion on Drug Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17460441.2025.2499123\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Drug Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17460441.2025.2499123","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
A comprehensive update on the application of high-throughput fluorescence imaging for novel drug discovery.
Introduction: High-throughput fluorescence imaging (HTFI) is revolutionizing drug discovery by enabling rapid and precise detection of biological targets and cellular processes. Recent advances in fluorescence imaging technologies now provide unprecedented sensitivity, resolution, and throughput. Integration of artificial intelligence (AI) and machine learning (ML) into HTFI workflows significantly enhances data processing, aiding in hit identification, pattern recognition, and mechanistic understanding.
Areas covered: This review outlines recent technological developments, integration strategies, and emerging applications of HTFI. It emphasizes HTFI's role in phenotypic screening, especially for complex diseases such as cancer, neurodegenerative disorders, and viral infections. Additionally, it highlights advances in 3D culture systems, organoids, and organ-on-a-chip technologies, which facilitate physiologically relevant testing, improved predictive accuracy, and translational potential, alongside innovative molecular probes and biosensors.
Expert opinion: Despite its advancements, HTFI faces ongoing challenges, including data standardization, integration with multi-omics approaches, and scalability of advanced models. However, recent progress in organoid and 3D modeling technologies has enhanced the physiological relevance of HTFI assays, complemented by sophisticated AI and ML-driven data analysis techniques.
期刊介绍:
Expert Opinion on Drug Discovery (ISSN 1746-0441 [print], 1746-045X [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on novel technologies involved in the drug discovery process, leading to new leads and reduced attrition rates. Each article is structured to incorporate the author’s own expert opinion on the scope for future development.
The Editors welcome:
Reviews covering chemoinformatics; bioinformatics; assay development; novel screening technologies; in vitro/in vivo models; structure-based drug design; systems biology
Drug Case Histories examining the steps involved in the preclinical and clinical development of a particular drug
The audience consists of scientists and managers in the healthcare and pharmaceutical industry, academic pharmaceutical scientists and other closely related professionals looking to enhance the success of their drug candidates through optimisation at the preclinical level.