基于学习的B细胞和t细胞淋巴瘤病理图像分类:一项多中心研究。

IF 2.3 3区 医学 Q2 HEMATOLOGY
Yuhua Ru, Xing Tong, Jiaxi Lin, Fang Chen, Zhe Wang, Xiangdong Shen, Jie Zhao, Yutong Jing, Yiyang Ding, Jinjin Zhu, Mimi Xu, Jinzhou Zhu, Jia Chen, Depei Wu
{"title":"基于学习的B细胞和t细胞淋巴瘤病理图像分类:一项多中心研究。","authors":"Yuhua Ru, Xing Tong, Jiaxi Lin, Fang Chen, Zhe Wang, Xiangdong Shen, Jie Zhao, Yutong Jing, Yiyang Ding, Jinjin Zhu, Mimi Xu, Jinzhou Zhu, Jia Chen, Depei Wu","doi":"10.1111/ejh.14433","DOIUrl":null,"url":null,"abstract":"<p><p>Lymphoma, a clonal malignancy from lymphocytes, includes diverse subtypes requiring distinct immunohistochemical stains for accurate diagnosis. Limited biopsy specimens often restrict the use of multiple stains, complicating diagnostic workflows. Lymphomas are typically classified into B-cell and T-cell types, each with specific markers. This study represents the first feasibility study in deploying deep learning models for B- and T-cell lymphoma classification on histopathological images. We analyzed 1510 H&E-stained sections (750 B-cell, 760 T-cell) with CNN models (Xception, NASNetL, ResNet50, EfficientNet), enhanced by Convolutional Block Attention Modules (CBAMs). All models demonstrated strong classification capabilities, with EfficientNet achieving the highest accuracy at 91.5% and the best precision at 91.9%, while Xception performed the best recall at 91.5%. Furthermore, the deep learning models significantly outperformed human pathologists in classification accuracy and inference speed, processing images in milliseconds compared to the several seconds required for manual diagnosis. These findings underscore the effectiveness of advanced CNN models in improving diagnostic precision while reducing dependency on manual staining and interpretation, and the integration of AI-driven classification can provide valuable support for pathologists.</p>","PeriodicalId":11955,"journal":{"name":"European Journal of Haematology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning-Based Classification of B- and T-Cell Lymphoma on Histopathological Images: A Multicenter Study.\",\"authors\":\"Yuhua Ru, Xing Tong, Jiaxi Lin, Fang Chen, Zhe Wang, Xiangdong Shen, Jie Zhao, Yutong Jing, Yiyang Ding, Jinjin Zhu, Mimi Xu, Jinzhou Zhu, Jia Chen, Depei Wu\",\"doi\":\"10.1111/ejh.14433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lymphoma, a clonal malignancy from lymphocytes, includes diverse subtypes requiring distinct immunohistochemical stains for accurate diagnosis. Limited biopsy specimens often restrict the use of multiple stains, complicating diagnostic workflows. Lymphomas are typically classified into B-cell and T-cell types, each with specific markers. This study represents the first feasibility study in deploying deep learning models for B- and T-cell lymphoma classification on histopathological images. We analyzed 1510 H&E-stained sections (750 B-cell, 760 T-cell) with CNN models (Xception, NASNetL, ResNet50, EfficientNet), enhanced by Convolutional Block Attention Modules (CBAMs). All models demonstrated strong classification capabilities, with EfficientNet achieving the highest accuracy at 91.5% and the best precision at 91.9%, while Xception performed the best recall at 91.5%. Furthermore, the deep learning models significantly outperformed human pathologists in classification accuracy and inference speed, processing images in milliseconds compared to the several seconds required for manual diagnosis. These findings underscore the effectiveness of advanced CNN models in improving diagnostic precision while reducing dependency on manual staining and interpretation, and the integration of AI-driven classification can provide valuable support for pathologists.</p>\",\"PeriodicalId\":11955,\"journal\":{\"name\":\"European Journal of Haematology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Haematology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/ejh.14433\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Haematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/ejh.14433","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

淋巴瘤是一种来自淋巴细胞的克隆性恶性肿瘤,包括不同的亚型,需要不同的免疫组织化学染色才能准确诊断。有限的活检标本往往限制了多种染色的使用,使诊断工作流程复杂化。淋巴瘤通常分为b细胞型和t细胞型,每种类型都有特定的标记物。这项研究是在组织病理图像上部署B细胞和t细胞淋巴瘤分类的深度学习模型的第一个可行性研究。我们使用CNN模型(Xception, NASNetL, ResNet50, EfficientNet)分析了1510个h&e染色切片(750个b细胞,760个t细胞),并使用卷积块注意力模块(CBAMs)进行增强。所有模型都表现出了很强的分类能力,其中效率网的准确率最高,达到91.5%,准确率最高,达到91.9%,而Xception的召回率最高,达到91.5%。此外,深度学习模型在分类精度和推理速度方面明显优于人类病理学家,处理图像的时间为毫秒,而人工诊断需要几秒钟。这些发现强调了先进的CNN模型在提高诊断精度的同时减少对人工染色和解释的依赖方面的有效性,并且人工智能驱动分类的集成可以为病理学家提供有价值的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning-Based Classification of B- and T-Cell Lymphoma on Histopathological Images: A Multicenter Study.

Lymphoma, a clonal malignancy from lymphocytes, includes diverse subtypes requiring distinct immunohistochemical stains for accurate diagnosis. Limited biopsy specimens often restrict the use of multiple stains, complicating diagnostic workflows. Lymphomas are typically classified into B-cell and T-cell types, each with specific markers. This study represents the first feasibility study in deploying deep learning models for B- and T-cell lymphoma classification on histopathological images. We analyzed 1510 H&E-stained sections (750 B-cell, 760 T-cell) with CNN models (Xception, NASNetL, ResNet50, EfficientNet), enhanced by Convolutional Block Attention Modules (CBAMs). All models demonstrated strong classification capabilities, with EfficientNet achieving the highest accuracy at 91.5% and the best precision at 91.9%, while Xception performed the best recall at 91.5%. Furthermore, the deep learning models significantly outperformed human pathologists in classification accuracy and inference speed, processing images in milliseconds compared to the several seconds required for manual diagnosis. These findings underscore the effectiveness of advanced CNN models in improving diagnostic precision while reducing dependency on manual staining and interpretation, and the integration of AI-driven classification can provide valuable support for pathologists.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
168
审稿时长
4-8 weeks
期刊介绍: European Journal of Haematology is an international journal for communication of basic and clinical research in haematology. The journal welcomes manuscripts on molecular, cellular and clinical research on diseases of the blood, vascular and lymphatic tissue, and on basic molecular and cellular research related to normal development and function of the blood, vascular and lymphatic tissue. The journal also welcomes reviews on clinical haematology and basic research, case reports, and clinical pictures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信