{"title":"最小描述长度原理油藏计算。","authors":"Antony Mizzi, Michael Small, David M Walker","doi":"10.1063/5.0252938","DOIUrl":null,"url":null,"abstract":"<p><p>We use the minimum description length (MDL) principle, which is an information-theoretic criterion for model selection, to determine echo-state network readout subsets. We find that this method of MDL subset selection improves accuracy when forecasting the Lorenz, Rössler, and Thomas attractors. It also improves the performance benefit that occurs when higher-order terms are included in the readout layer. We provide an explanation for these improvements in terms of decreased linear dependence and improved consistency.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reservoir computing with the minimum description length principle.\",\"authors\":\"Antony Mizzi, Michael Small, David M Walker\",\"doi\":\"10.1063/5.0252938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We use the minimum description length (MDL) principle, which is an information-theoretic criterion for model selection, to determine echo-state network readout subsets. We find that this method of MDL subset selection improves accuracy when forecasting the Lorenz, Rössler, and Thomas attractors. It also improves the performance benefit that occurs when higher-order terms are included in the readout layer. We provide an explanation for these improvements in terms of decreased linear dependence and improved consistency.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 4\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0252938\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0252938","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Reservoir computing with the minimum description length principle.
We use the minimum description length (MDL) principle, which is an information-theoretic criterion for model selection, to determine echo-state network readout subsets. We find that this method of MDL subset selection improves accuracy when forecasting the Lorenz, Rössler, and Thomas attractors. It also improves the performance benefit that occurs when higher-order terms are included in the readout layer. We provide an explanation for these improvements in terms of decreased linear dependence and improved consistency.
期刊介绍:
Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.