设计高效的sars - cov - 23c样蛋白酶杂环抑制剂:一项全面的计算机研究。

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nabil Nor, Soukaina Zahm, Habib El Alaoui El Abdallaoui, Said Kerraj, Naima Naji, Noureddine Mazoir, Najia Komiha, Khadija Marakchi, Mohammed Salah
{"title":"设计高效的sars - cov - 23c样蛋白酶杂环抑制剂:一项全面的计算机研究。","authors":"Nabil Nor, Soukaina Zahm, Habib El Alaoui El Abdallaoui, Said Kerraj, Naima Naji, Noureddine Mazoir, Najia Komiha, Khadija Marakchi, Mohammed Salah","doi":"10.1080/07391102.2025.2494842","DOIUrl":null,"url":null,"abstract":"<p><p>To address the limitations of current COVID-19 treatments, we conducted an integrated in-silico investigation to design potential drugs with proven efficacy against the virus. We developed Quantitative Structure-Activity Relationship (QSAR) models using a database of 63 Aromatic heterocyclic compounds, focusing on key parameters Effective Diameter (ED) and Diameter Maximum (DM). Our models, utilizing multi-linear regression (MLR) and Artificial Neural Network (ANN), were validated according to OECD principles and successfully used to predict unexplored aromatic heterocyclic compounds with Pyridine Cores. Compound 4 (Dexbrompheniramine) exhibited high inhibition against the SARS coronavirus 3 C-like protease, leading to the design of two new molecules (compounds 15 and 16) with enhanced activity based on structural enhancements from the QSAR model. Docking studies and molecular dynamics simulations confirmed the improved binding energies and stability of compounds 15 and 16, with compound 15 showing remarkable stability and strong binding affinity with the 3 C-like proteinase (1P9U). This comprehensive in-silico review identifies compound 15 as a promising candidate for experimental evaluation as a potential COVID-19 drug, highlighting a significant advancement in our battle against the pandemic.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-9"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing highly efficient heterocyclic inhibitors for SARS-CoV-2 3C-like proteinase: a comprehensive in silico study.\",\"authors\":\"Nabil Nor, Soukaina Zahm, Habib El Alaoui El Abdallaoui, Said Kerraj, Naima Naji, Noureddine Mazoir, Najia Komiha, Khadija Marakchi, Mohammed Salah\",\"doi\":\"10.1080/07391102.2025.2494842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To address the limitations of current COVID-19 treatments, we conducted an integrated in-silico investigation to design potential drugs with proven efficacy against the virus. We developed Quantitative Structure-Activity Relationship (QSAR) models using a database of 63 Aromatic heterocyclic compounds, focusing on key parameters Effective Diameter (ED) and Diameter Maximum (DM). Our models, utilizing multi-linear regression (MLR) and Artificial Neural Network (ANN), were validated according to OECD principles and successfully used to predict unexplored aromatic heterocyclic compounds with Pyridine Cores. Compound 4 (Dexbrompheniramine) exhibited high inhibition against the SARS coronavirus 3 C-like protease, leading to the design of two new molecules (compounds 15 and 16) with enhanced activity based on structural enhancements from the QSAR model. Docking studies and molecular dynamics simulations confirmed the improved binding energies and stability of compounds 15 and 16, with compound 15 showing remarkable stability and strong binding affinity with the 3 C-like proteinase (1P9U). This comprehensive in-silico review identifies compound 15 as a promising candidate for experimental evaluation as a potential COVID-19 drug, highlighting a significant advancement in our battle against the pandemic.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2025.2494842\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2025.2494842","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

为了解决当前COVID-19治疗方法的局限性,我们进行了一项综合计算机调查,以设计已证实对该病毒有效的潜在药物。以63个芳香族杂环化合物为研究对象,建立了基于有效直径(ED)和最大直径(DM)的定量构效关系(QSAR)模型。我们的模型利用多元线性回归(MLR)和人工神经网络(ANN),根据OECD原则进行了验证,并成功地用于预测含有吡啶核的未开发芳香杂环化合物。化合物4(右溴苯那明)对SARS冠状病毒c样蛋白酶表现出高度抑制作用,导致两个新分子(化合物15和16)基于QSAR模型的结构增强而具有增强的活性。对接研究和分子动力学模拟证实,化合物15和16的结合能和稳定性都有所提高,其中化合物15具有显著的稳定性,与3c样蛋白酶(1P9U)具有较强的结合亲和力。这项全面的计算机审查确定了化合物15作为潜在的COVID-19药物进行实验评估的有希望的候选者,突出了我们在抗击大流行的斗争中取得的重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing highly efficient heterocyclic inhibitors for SARS-CoV-2 3C-like proteinase: a comprehensive in silico study.

To address the limitations of current COVID-19 treatments, we conducted an integrated in-silico investigation to design potential drugs with proven efficacy against the virus. We developed Quantitative Structure-Activity Relationship (QSAR) models using a database of 63 Aromatic heterocyclic compounds, focusing on key parameters Effective Diameter (ED) and Diameter Maximum (DM). Our models, utilizing multi-linear regression (MLR) and Artificial Neural Network (ANN), were validated according to OECD principles and successfully used to predict unexplored aromatic heterocyclic compounds with Pyridine Cores. Compound 4 (Dexbrompheniramine) exhibited high inhibition against the SARS coronavirus 3 C-like protease, leading to the design of two new molecules (compounds 15 and 16) with enhanced activity based on structural enhancements from the QSAR model. Docking studies and molecular dynamics simulations confirmed the improved binding energies and stability of compounds 15 and 16, with compound 15 showing remarkable stability and strong binding affinity with the 3 C-like proteinase (1P9U). This comprehensive in-silico review identifies compound 15 as a promising candidate for experimental evaluation as a potential COVID-19 drug, highlighting a significant advancement in our battle against the pandemic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信