芝麻素通过脂质代谢的重编程调节乳腺癌。

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Prajakta Patil, Amol Chaudhary, Vishwambhar Vishnu Bhandare, Vishal S Patil, Faizan A Beerwala, Veeresh Karoshi, Kailas D Sonawane, Aniket Mali, Ruchika Kaul-Ghanekar
{"title":"芝麻素通过脂质代谢的重编程调节乳腺癌。","authors":"Prajakta Patil, Amol Chaudhary, Vishwambhar Vishnu Bhandare, Vishal S Patil, Faizan A Beerwala, Veeresh Karoshi, Kailas D Sonawane, Aniket Mali, Ruchika Kaul-Ghanekar","doi":"10.1080/07391102.2024.2333991","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic reprogramming is one of the hallmarks of breast cancer (BC), involving elevated synthesis and uptake of lipids, for catering to increased energy demand of cancer cells and to suppress the host immune system. Besides promoting proliferation and survival of BC cells, lipid metabolism reprogramming (LMR) is associated with stemness and chemoresistance. Recently, lignans have been reported for their therapeutic potential against different cancers, including BC. Here, we explored the potential of lignans to target LMR pathways in BC through computational approach. Initially, 88 lignans having potential anticancer activities, underwent druglikeness and pharmacokinetics analysis, displaying promising pharmacokinetic properties, except for 13 molecules with violations. Molecular docking assessed the interaction of 88 lignans (NPACT) with therapeutic targets of LMR including 3-Hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), Sterol regulatory element-binding proteins 1 and 2 (SREBP1 and 2), Low-density lipoprotein receptor (LDLR), Acetyl-CoA Acetyltransferase 1 (ACAT1), ATP-binding cassette transporter (ABCA1), Liver X receptor α (LXRα), Apolipoprotein A1 (APOA1), Fatty Acid Synthase (FASN), Peroxisome proliferator-activated receptor gamma (PPARG), Stearoyl-CoA desaturase (SCD1), Acetyl-CoA carboxylase 1 and 2 (ACC1/ACACA, and ACC2/ACACB). In silico screening revealed sesamin (SE) as the best-identified hit that showed stable and consistent binding with all the selected targets of LMR. The stability of these complexes was validated by a 100 ns simulation run, and their binding free energy calculation was determined by MM-PBSA method. Interestingly, SE modulated the mRNA expression of genes involved in LMR in BC cell lines, MCF-7 and MDA-MB-231, thereby suggesting its potential as an inhibitor of LMR.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-21"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sesamin regulates breast cancer through reprogramming of lipid metabolism.\",\"authors\":\"Prajakta Patil, Amol Chaudhary, Vishwambhar Vishnu Bhandare, Vishal S Patil, Faizan A Beerwala, Veeresh Karoshi, Kailas D Sonawane, Aniket Mali, Ruchika Kaul-Ghanekar\",\"doi\":\"10.1080/07391102.2024.2333991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metabolic reprogramming is one of the hallmarks of breast cancer (BC), involving elevated synthesis and uptake of lipids, for catering to increased energy demand of cancer cells and to suppress the host immune system. Besides promoting proliferation and survival of BC cells, lipid metabolism reprogramming (LMR) is associated with stemness and chemoresistance. Recently, lignans have been reported for their therapeutic potential against different cancers, including BC. Here, we explored the potential of lignans to target LMR pathways in BC through computational approach. Initially, 88 lignans having potential anticancer activities, underwent druglikeness and pharmacokinetics analysis, displaying promising pharmacokinetic properties, except for 13 molecules with violations. Molecular docking assessed the interaction of 88 lignans (NPACT) with therapeutic targets of LMR including 3-Hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), Sterol regulatory element-binding proteins 1 and 2 (SREBP1 and 2), Low-density lipoprotein receptor (LDLR), Acetyl-CoA Acetyltransferase 1 (ACAT1), ATP-binding cassette transporter (ABCA1), Liver X receptor α (LXRα), Apolipoprotein A1 (APOA1), Fatty Acid Synthase (FASN), Peroxisome proliferator-activated receptor gamma (PPARG), Stearoyl-CoA desaturase (SCD1), Acetyl-CoA carboxylase 1 and 2 (ACC1/ACACA, and ACC2/ACACB). In silico screening revealed sesamin (SE) as the best-identified hit that showed stable and consistent binding with all the selected targets of LMR. The stability of these complexes was validated by a 100 ns simulation run, and their binding free energy calculation was determined by MM-PBSA method. Interestingly, SE modulated the mRNA expression of genes involved in LMR in BC cell lines, MCF-7 and MDA-MB-231, thereby suggesting its potential as an inhibitor of LMR.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"1-21\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2024.2333991\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2333991","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

代谢重编程是乳腺癌(BC)的特征之一,涉及脂质合成和摄取的升高,以满足癌细胞增加的能量需求并抑制宿主免疫系统。脂质代谢重编程(LMR)除了促进BC细胞的增殖和存活外,还与干细胞和化疗耐药有关。最近,木脂素被报道具有治疗不同癌症的潜力,包括BC。在这里,我们通过计算方法探索了木脂素靶向BC中LMR通路的潜力。最初,88种具有潜在抗癌活性的木脂素进行了药物相似性和药代动力学分析,显示出有希望的药代动力学特性,除了13种分子存在违规。分子对接评估了88种木脂素(NPACT)与LMR治疗靶点的相互作用,包括3-羟基-3-甲基-戊二酰辅酶A还原酶(HMGCR)、甾醇调节元件结合蛋白1和2 (SREBP1和2)、低密度脂蛋白受体(LDLR)、乙酰辅酶A乙酰转移酶1 (ACAT1)、atp结合盒转运蛋白(ABCA1)、肝X受体α (LXRα)、载脂蛋白A1 (APOA1)、脂肪酸合成酶(FASN)、过氧化物酶体增殖物激活受体γ (PPARG)、硬脂酰辅酶a去饱和酶(SCD1),乙酰酰辅酶a羧化酶1和2 (ACC1/ACACA和ACC2/ACACB)。硅筛选显示芝麻素(sesamin, SE)是鉴定最好的靶点,与LMR的所有选定靶点具有稳定和一致的结合。通过100 ns的模拟运行验证了这些配合物的稳定性,并用MM-PBSA法计算了它们的结合自由能。有趣的是,SE调节了BC细胞系、MCF-7和MDA-MB-231中LMR相关基因的mRNA表达,从而表明其作为LMR抑制剂的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sesamin regulates breast cancer through reprogramming of lipid metabolism.

Metabolic reprogramming is one of the hallmarks of breast cancer (BC), involving elevated synthesis and uptake of lipids, for catering to increased energy demand of cancer cells and to suppress the host immune system. Besides promoting proliferation and survival of BC cells, lipid metabolism reprogramming (LMR) is associated with stemness and chemoresistance. Recently, lignans have been reported for their therapeutic potential against different cancers, including BC. Here, we explored the potential of lignans to target LMR pathways in BC through computational approach. Initially, 88 lignans having potential anticancer activities, underwent druglikeness and pharmacokinetics analysis, displaying promising pharmacokinetic properties, except for 13 molecules with violations. Molecular docking assessed the interaction of 88 lignans (NPACT) with therapeutic targets of LMR including 3-Hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), Sterol regulatory element-binding proteins 1 and 2 (SREBP1 and 2), Low-density lipoprotein receptor (LDLR), Acetyl-CoA Acetyltransferase 1 (ACAT1), ATP-binding cassette transporter (ABCA1), Liver X receptor α (LXRα), Apolipoprotein A1 (APOA1), Fatty Acid Synthase (FASN), Peroxisome proliferator-activated receptor gamma (PPARG), Stearoyl-CoA desaturase (SCD1), Acetyl-CoA carboxylase 1 and 2 (ACC1/ACACA, and ACC2/ACACB). In silico screening revealed sesamin (SE) as the best-identified hit that showed stable and consistent binding with all the selected targets of LMR. The stability of these complexes was validated by a 100 ns simulation run, and their binding free energy calculation was determined by MM-PBSA method. Interestingly, SE modulated the mRNA expression of genes involved in LMR in BC cell lines, MCF-7 and MDA-MB-231, thereby suggesting its potential as an inhibitor of LMR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信