通过强化学习促进自愿囚徒困境博弈中的合作。

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-04-01 DOI:10.1063/5.0267846
Yijie Huang, Yanhong Chen
{"title":"通过强化学习促进自愿囚徒困境博弈中的合作。","authors":"Yijie Huang, Yanhong Chen","doi":"10.1063/5.0267846","DOIUrl":null,"url":null,"abstract":"<p><p>Reinforcement learning technology has been empirically demonstrated to facilitate cooperation in game models. However, traditional research has primarily focused on two-strategy frameworks (cooperation and defection), which inadequately captures the complexity of real-world scenarios. To address this limitation, we integrated Q-learning into the prisoner's dilemma game, incorporating three strategies: cooperation, defection, and going it alone. We defined each agent's state based on the number of neighboring agents opting for cooperation and included social payoff in the Q-table update process. Numerical simulations indicate that this framework significantly enhances cooperation and average payoff as the degree of social-attention increases. This phenomenon occurs because social payoff enables individuals to move beyond narrow self-interest and consider broader social benefits. Additionally, we conducted a thorough analysis of the mechanisms underlying this enhancement of cooperation.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Promoting cooperation in the voluntary prisoner's dilemma game via reinforcement learning.\",\"authors\":\"Yijie Huang, Yanhong Chen\",\"doi\":\"10.1063/5.0267846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reinforcement learning technology has been empirically demonstrated to facilitate cooperation in game models. However, traditional research has primarily focused on two-strategy frameworks (cooperation and defection), which inadequately captures the complexity of real-world scenarios. To address this limitation, we integrated Q-learning into the prisoner's dilemma game, incorporating three strategies: cooperation, defection, and going it alone. We defined each agent's state based on the number of neighboring agents opting for cooperation and included social payoff in the Q-table update process. Numerical simulations indicate that this framework significantly enhances cooperation and average payoff as the degree of social-attention increases. This phenomenon occurs because social payoff enables individuals to move beyond narrow self-interest and consider broader social benefits. Additionally, we conducted a thorough analysis of the mechanisms underlying this enhancement of cooperation.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 4\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0267846\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0267846","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

强化学习技术已被实证证明可以促进博弈模型中的合作。然而,传统的研究主要集中在两种策略框架(合作和背叛)上,这不足以捕捉到现实世界场景的复杂性。为了解决这一限制,我们将Q-learning整合到囚徒困境游戏中,结合了三种策略:合作、背叛和单干。我们根据选择合作的相邻代理的数量定义每个代理的状态,并在q表更新过程中包含社会收益。数值模拟表明,随着社会关注程度的增加,该框架显著提高了合作和平均收益。之所以会出现这种现象,是因为社会回报使个人能够超越狭隘的自身利益,考虑更广泛的社会利益。此外,我们还对加强合作的机制进行了深入分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Promoting cooperation in the voluntary prisoner's dilemma game via reinforcement learning.

Reinforcement learning technology has been empirically demonstrated to facilitate cooperation in game models. However, traditional research has primarily focused on two-strategy frameworks (cooperation and defection), which inadequately captures the complexity of real-world scenarios. To address this limitation, we integrated Q-learning into the prisoner's dilemma game, incorporating three strategies: cooperation, defection, and going it alone. We defined each agent's state based on the number of neighboring agents opting for cooperation and included social payoff in the Q-table update process. Numerical simulations indicate that this framework significantly enhances cooperation and average payoff as the degree of social-attention increases. This phenomenon occurs because social payoff enables individuals to move beyond narrow self-interest and consider broader social benefits. Additionally, we conducted a thorough analysis of the mechanisms underlying this enhancement of cooperation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信