AI Dermatochroma Analytica (AIDA):用于稳健肤色分类和分割的智能技术。

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Cosmetics Pub Date : 2024-12-01 Epub Date: 2024-12-10 DOI:10.3390/cosmetics11060218
Abderrachid Hamrani, Daniela Leizaola, Nikhil Kumar Reddy Vedere, Robert S Kirsner, Kacie Kaile, Alexander Lee Trinidad, Anuradha Godavarty
{"title":"AI Dermatochroma Analytica (AIDA):用于稳健肤色分类和分割的智能技术。","authors":"Abderrachid Hamrani, Daniela Leizaola, Nikhil Kumar Reddy Vedere, Robert S Kirsner, Kacie Kaile, Alexander Lee Trinidad, Anuradha Godavarty","doi":"10.3390/cosmetics11060218","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional methods for skin color classification, such as visual assessments and conventional image classification, face limitations in accuracy and consistency under varying conditions. To address this, we developed AI Dermatochroma Analytica (AIDA), an unsupervised learning system designed to enhance dermatological diagnostics. AIDA applies clustering techniques to classify skin tones without relying on labeled data, evaluating over twelve models, including K-means, density-based, hierarchical, and fuzzy logic algorithms. The model's key feature is its ability to mimic the process clinicians traditionally perform by visually matching the skin with the Fitzpatrick Skin Type (FST) palette scale but with enhanced precision and accuracy using Euclidean distance-based clustering techniques. AIDA demonstrated superior performance, achieving a 97% accuracy rate compared to 87% for a supervised convolutional neural network (CNN). The system also segments skin images into clusters based on color similarity, providing detailed spatial mapping aligned with dermatological standards. This segmentation reduces the uncertainty related to lighting conditions and other environmental factors, enhancing precision and consistency in skin color classification. This approach offers significant improvements in personalized dermatological care by reducing reliance on labeled data, improving diagnostic accuracy, and paving the way for future applications in diverse dermatological and cosmetic contexts.</p>","PeriodicalId":10735,"journal":{"name":"Cosmetics","volume":"11 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12014195/pdf/","citationCount":"0","resultStr":"{\"title\":\"AI Dermatochroma Analytica (AIDA): Smart Technology for Robust Skin Color Classification and Segmentation.\",\"authors\":\"Abderrachid Hamrani, Daniela Leizaola, Nikhil Kumar Reddy Vedere, Robert S Kirsner, Kacie Kaile, Alexander Lee Trinidad, Anuradha Godavarty\",\"doi\":\"10.3390/cosmetics11060218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditional methods for skin color classification, such as visual assessments and conventional image classification, face limitations in accuracy and consistency under varying conditions. To address this, we developed AI Dermatochroma Analytica (AIDA), an unsupervised learning system designed to enhance dermatological diagnostics. AIDA applies clustering techniques to classify skin tones without relying on labeled data, evaluating over twelve models, including K-means, density-based, hierarchical, and fuzzy logic algorithms. The model's key feature is its ability to mimic the process clinicians traditionally perform by visually matching the skin with the Fitzpatrick Skin Type (FST) palette scale but with enhanced precision and accuracy using Euclidean distance-based clustering techniques. AIDA demonstrated superior performance, achieving a 97% accuracy rate compared to 87% for a supervised convolutional neural network (CNN). The system also segments skin images into clusters based on color similarity, providing detailed spatial mapping aligned with dermatological standards. This segmentation reduces the uncertainty related to lighting conditions and other environmental factors, enhancing precision and consistency in skin color classification. This approach offers significant improvements in personalized dermatological care by reducing reliance on labeled data, improving diagnostic accuracy, and paving the way for future applications in diverse dermatological and cosmetic contexts.</p>\",\"PeriodicalId\":10735,\"journal\":{\"name\":\"Cosmetics\",\"volume\":\"11 6\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12014195/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cosmetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cosmetics11060218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cosmetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cosmetics11060218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

传统的肤色分类方法,如视觉评估和传统的图像分类,在不同的条件下,在准确性和一致性方面存在局限性。为了解决这个问题,我们开发了AI Dermatochroma Analytica (AIDA),这是一个旨在增强皮肤病诊断的无监督学习系统。AIDA应用聚类技术对肤色进行分类,而不依赖于标记数据,评估超过12种模型,包括K-means,基于密度的,分层的和模糊逻辑算法。该模型的主要特点是它能够模仿临床医生传统的过程,通过视觉匹配皮肤与菲茨帕特里克皮肤类型(FST)调色板尺度,但使用基于欧几里得距离的聚类技术提高了精度和准确性。AIDA表现出了卓越的性能,达到了97%的准确率,而监督卷积神经网络(CNN)的准确率为87%。该系统还根据颜色相似度将皮肤图像分割成簇,提供与皮肤学标准一致的详细空间映射。这种分割减少了与照明条件和其他环境因素相关的不确定性,提高了肤色分类的准确性和一致性。这种方法通过减少对标记数据的依赖,提高诊断准确性,为未来在各种皮肤病学和化妆品领域的应用铺平了道路,为个性化皮肤病学护理提供了重大改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI Dermatochroma Analytica (AIDA): Smart Technology for Robust Skin Color Classification and Segmentation.

Traditional methods for skin color classification, such as visual assessments and conventional image classification, face limitations in accuracy and consistency under varying conditions. To address this, we developed AI Dermatochroma Analytica (AIDA), an unsupervised learning system designed to enhance dermatological diagnostics. AIDA applies clustering techniques to classify skin tones without relying on labeled data, evaluating over twelve models, including K-means, density-based, hierarchical, and fuzzy logic algorithms. The model's key feature is its ability to mimic the process clinicians traditionally perform by visually matching the skin with the Fitzpatrick Skin Type (FST) palette scale but with enhanced precision and accuracy using Euclidean distance-based clustering techniques. AIDA demonstrated superior performance, achieving a 97% accuracy rate compared to 87% for a supervised convolutional neural network (CNN). The system also segments skin images into clusters based on color similarity, providing detailed spatial mapping aligned with dermatological standards. This segmentation reduces the uncertainty related to lighting conditions and other environmental factors, enhancing precision and consistency in skin color classification. This approach offers significant improvements in personalized dermatological care by reducing reliance on labeled data, improving diagnostic accuracy, and paving the way for future applications in diverse dermatological and cosmetic contexts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cosmetics
Cosmetics Medicine-Surgery
CiteScore
5.20
自引率
12.10%
发文量
108
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信