Kevin Thornton, Elizabeth X Kwan, Kerry Bubb, Luana Paleologu, M K Raghuraman, Bonita J Brewer, Josh T Cuperus, Christine Queitsch
{"title":"rDNA拷贝数变异影响酵母对不同环境的适应性。","authors":"Kevin Thornton, Elizabeth X Kwan, Kerry Bubb, Luana Paleologu, M K Raghuraman, Bonita J Brewer, Josh T Cuperus, Christine Queitsch","doi":"10.1093/genetics/iyaf075","DOIUrl":null,"url":null,"abstract":"<p><p>Ribosomal DNA (rDNA) in eukaryotes is maintained in hundreds of copies with rDNA copy number varying greatly among individuals within a species. In the budding yeast Saccharomyces cerevisiae, the rDNA copy number across wild isolates ranges from 90 to 300 copies. Previous studies showed that 35 rDNA copies are sufficient for ribosome biogenesis in this yeast and enable wild-type-like growth in standard laboratory growth conditions. We addressed two major questions concerning rDNA copy number variation in this yeast: (1) What are the fitness consequences of rDNA copy number variation outside and within the natural range in standard laboratory growth conditions? (2) Do these fitness effects change in different growth conditions? We used growth competitions to compare the fitness effects of rDNA copy number variation in otherwise isogenic strains whose rDNA copy number ranged from 35 to 200. In standard growth conditions, we found that fitness gradually increases from 35 rDNA copies until reaching a plateau that spans from 98 to 160 rDNA copies, well within the natural range. However, rDNA copy number-dependent fitness differed across environments. The gradual fitness increase with increasing rDNA copy number in standard growth conditions gave way to a markedly lower fitness of strains with copy numbers below the natural range in these two stress conditions. These results suggest that selective pressures drive rDNA copy number in this yeast to at least ∼100 copies and that a higher number of copies might buffer against environmental stress. The similarity of the S. cerevisiae rDNA copy number range to the ranges reported in C. elegans, D. melanogaster, and humans points to conserved selective pressures maintaining the range of natural rDNA copy number in these highly diverse species.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"rDNA copy number variation affects yeast fitness in response to different environments.\",\"authors\":\"Kevin Thornton, Elizabeth X Kwan, Kerry Bubb, Luana Paleologu, M K Raghuraman, Bonita J Brewer, Josh T Cuperus, Christine Queitsch\",\"doi\":\"10.1093/genetics/iyaf075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ribosomal DNA (rDNA) in eukaryotes is maintained in hundreds of copies with rDNA copy number varying greatly among individuals within a species. In the budding yeast Saccharomyces cerevisiae, the rDNA copy number across wild isolates ranges from 90 to 300 copies. Previous studies showed that 35 rDNA copies are sufficient for ribosome biogenesis in this yeast and enable wild-type-like growth in standard laboratory growth conditions. We addressed two major questions concerning rDNA copy number variation in this yeast: (1) What are the fitness consequences of rDNA copy number variation outside and within the natural range in standard laboratory growth conditions? (2) Do these fitness effects change in different growth conditions? We used growth competitions to compare the fitness effects of rDNA copy number variation in otherwise isogenic strains whose rDNA copy number ranged from 35 to 200. In standard growth conditions, we found that fitness gradually increases from 35 rDNA copies until reaching a plateau that spans from 98 to 160 rDNA copies, well within the natural range. However, rDNA copy number-dependent fitness differed across environments. The gradual fitness increase with increasing rDNA copy number in standard growth conditions gave way to a markedly lower fitness of strains with copy numbers below the natural range in these two stress conditions. These results suggest that selective pressures drive rDNA copy number in this yeast to at least ∼100 copies and that a higher number of copies might buffer against environmental stress. The similarity of the S. cerevisiae rDNA copy number range to the ranges reported in C. elegans, D. melanogaster, and humans points to conserved selective pressures maintaining the range of natural rDNA copy number in these highly diverse species.</p>\",\"PeriodicalId\":48925,\"journal\":{\"name\":\"Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/genetics/iyaf075\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf075","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
rDNA copy number variation affects yeast fitness in response to different environments.
Ribosomal DNA (rDNA) in eukaryotes is maintained in hundreds of copies with rDNA copy number varying greatly among individuals within a species. In the budding yeast Saccharomyces cerevisiae, the rDNA copy number across wild isolates ranges from 90 to 300 copies. Previous studies showed that 35 rDNA copies are sufficient for ribosome biogenesis in this yeast and enable wild-type-like growth in standard laboratory growth conditions. We addressed two major questions concerning rDNA copy number variation in this yeast: (1) What are the fitness consequences of rDNA copy number variation outside and within the natural range in standard laboratory growth conditions? (2) Do these fitness effects change in different growth conditions? We used growth competitions to compare the fitness effects of rDNA copy number variation in otherwise isogenic strains whose rDNA copy number ranged from 35 to 200. In standard growth conditions, we found that fitness gradually increases from 35 rDNA copies until reaching a plateau that spans from 98 to 160 rDNA copies, well within the natural range. However, rDNA copy number-dependent fitness differed across environments. The gradual fitness increase with increasing rDNA copy number in standard growth conditions gave way to a markedly lower fitness of strains with copy numbers below the natural range in these two stress conditions. These results suggest that selective pressures drive rDNA copy number in this yeast to at least ∼100 copies and that a higher number of copies might buffer against environmental stress. The similarity of the S. cerevisiae rDNA copy number range to the ranges reported in C. elegans, D. melanogaster, and humans points to conserved selective pressures maintaining the range of natural rDNA copy number in these highly diverse species.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.