CD109通过稳定IL-6受体α和激活STAT3/NRF2通路,驱动IL-6介导的鳞状细胞癌细胞的致瘤性和抗氧化状态。

IF 9.4 1区 医学 Q1 HEMATOLOGY
Amani Hassan, Tenzin Kungyal, Shufeng Zhou, Meryem Blati, Kenneth Finnson, Nick Bertos, Nahid Golabi, Nader Sadeghi, Sampath Loganathan, Anie Philip
{"title":"CD109通过稳定IL-6受体α和激活STAT3/NRF2通路,驱动IL-6介导的鳞状细胞癌细胞的致瘤性和抗氧化状态。","authors":"Amani Hassan, Tenzin Kungyal, Shufeng Zhou, Meryem Blati, Kenneth Finnson, Nick Bertos, Nahid Golabi, Nader Sadeghi, Sampath Loganathan, Anie Philip","doi":"10.1186/s40164-025-00630-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Squamous cell carcinoma (SCC) is a prevalent malignancy and there are limited options to block the recurrence and metastasis that often occur in SCC patients. Although IL-6, a proinflammatory cytokine, is strongly implicated in SCC pathogenesis, its mechanism of action is poorly understood. The GPI-anchored membrane protein CD109 is frequently overexpressed in SCC and is associated with malignant transformation. The current study aims to investigate whether CD109 interacts with IL-6 receptor alpha (IL6Rα) and promotes IL-6-mediated oncogenic signaling to drive SCC progression.</p><p><strong>Methods: </strong>IL6Rα interaction with CD109 was determined by coimmunoprecipitation, immunohistochemistry, immunofluorescence and FACS analysis using human SCC (oral and vulvar) cell lines and human oral SCC tumors versus control tissue. Regulation of IL-6-induced signaling and antioxidant responses by CD109 was analyzed via STAT3/NRF2/SOD1/HO1 pathway activation. Regulation of IL-6-mediated tumorigenicity by CD109 was determined using stem cell marker expression and a spheroid formation assay. Clinical validation was achieved using genomic and proteomic analysis of oral SCC tumors and of head and neck SCC patient data.</p><p><strong>Results: </strong>We show that CD109 interacts with and stabilizes IL6Rα expression and promotes IL-6/STAT3/NRF2 pathway in oral and vulvar SCC cells. Loss of CD109 attenuates this pathway leading to loss of cancer cell stemness and decreased expression of superoxide dismutase1 and heme oxygenase-1, antioxidant proteins important for cell survival after chemotherapy. Furthermore, clinical validation of these findings was achieved through multi-omic analysis of oral SCC tumors and of head and neck SCC patient data.</p><p><strong>Conclusions: </strong>This work uncovers a previously unidentified mechanism in which CD109 serves as an essential regulator of IL6Rα expression and IL-6 mediated signaling in SCC cells, promoting stemness and antioxidant state, mechanisms known to mediate therapy resistance in SCC. Our findings establish a mechanistic validation for investigating the therapeutic utility of the CD109/ IL6Rα/STAT3/NRF2 pathway in SCC.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":"14 1","pages":"64"},"PeriodicalIF":9.4000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12046912/pdf/","citationCount":"0","resultStr":"{\"title\":\"IL-6-mediated tumorigenicity and antioxidant state in squamous cell carcinoma cells are driven by CD109 via stabilization of IL-6 receptor-alpha and activation of STAT3/NRF2 pathway.\",\"authors\":\"Amani Hassan, Tenzin Kungyal, Shufeng Zhou, Meryem Blati, Kenneth Finnson, Nick Bertos, Nahid Golabi, Nader Sadeghi, Sampath Loganathan, Anie Philip\",\"doi\":\"10.1186/s40164-025-00630-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Squamous cell carcinoma (SCC) is a prevalent malignancy and there are limited options to block the recurrence and metastasis that often occur in SCC patients. Although IL-6, a proinflammatory cytokine, is strongly implicated in SCC pathogenesis, its mechanism of action is poorly understood. The GPI-anchored membrane protein CD109 is frequently overexpressed in SCC and is associated with malignant transformation. The current study aims to investigate whether CD109 interacts with IL-6 receptor alpha (IL6Rα) and promotes IL-6-mediated oncogenic signaling to drive SCC progression.</p><p><strong>Methods: </strong>IL6Rα interaction with CD109 was determined by coimmunoprecipitation, immunohistochemistry, immunofluorescence and FACS analysis using human SCC (oral and vulvar) cell lines and human oral SCC tumors versus control tissue. Regulation of IL-6-induced signaling and antioxidant responses by CD109 was analyzed via STAT3/NRF2/SOD1/HO1 pathway activation. Regulation of IL-6-mediated tumorigenicity by CD109 was determined using stem cell marker expression and a spheroid formation assay. Clinical validation was achieved using genomic and proteomic analysis of oral SCC tumors and of head and neck SCC patient data.</p><p><strong>Results: </strong>We show that CD109 interacts with and stabilizes IL6Rα expression and promotes IL-6/STAT3/NRF2 pathway in oral and vulvar SCC cells. Loss of CD109 attenuates this pathway leading to loss of cancer cell stemness and decreased expression of superoxide dismutase1 and heme oxygenase-1, antioxidant proteins important for cell survival after chemotherapy. Furthermore, clinical validation of these findings was achieved through multi-omic analysis of oral SCC tumors and of head and neck SCC patient data.</p><p><strong>Conclusions: </strong>This work uncovers a previously unidentified mechanism in which CD109 serves as an essential regulator of IL6Rα expression and IL-6 mediated signaling in SCC cells, promoting stemness and antioxidant state, mechanisms known to mediate therapy resistance in SCC. Our findings establish a mechanistic validation for investigating the therapeutic utility of the CD109/ IL6Rα/STAT3/NRF2 pathway in SCC.</p>\",\"PeriodicalId\":12180,\"journal\":{\"name\":\"Experimental Hematology & Oncology\",\"volume\":\"14 1\",\"pages\":\"64\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12046912/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Hematology & Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40164-025-00630-x\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40164-025-00630-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:鳞状细胞癌(SCC)是一种常见的恶性肿瘤,阻止SCC患者复发和转移的方法有限。虽然IL-6是一种促炎细胞因子,与鳞状细胞癌的发病密切相关,但其作用机制尚不清楚。gpi锚定的膜蛋白CD109在鳞状细胞癌中经常过表达,并与恶性转化有关。目前的研究旨在研究CD109是否与IL-6受体α (IL6Rα)相互作用,并促进IL-6介导的致癌信号传导以驱动SCC进展。方法:利用人SCC(口腔和外阴)细胞系和人口腔SCC肿瘤与对照组织,通过免疫共沉淀、免疫组织化学、免疫荧光和FACS分析,检测IL6Rα与CD109的相互作用。通过STAT3/NRF2/SOD1/HO1通路激活分析CD109对il -6诱导的信号通路和抗氧化反应的调控。通过干细胞标记物表达和球体形成实验确定CD109对il -6介导的致瘤性的调节。临床验证是通过对口腔鳞状细胞癌肿瘤和头颈部鳞状细胞癌患者数据的基因组和蛋白质组学分析来实现的。结果:我们发现CD109与口腔和外阴SCC细胞中IL-6/STAT3/NRF2通路相互作用并稳定其表达,促进IL-6/STAT3/NRF2通路。CD109的缺失减弱了这一途径,导致癌细胞干细胞性丧失,超氧化物歧化酶1和血红素氧化酶1的表达减少,这两种抗氧化蛋白对化疗后细胞存活很重要。此外,通过对口腔鳞状细胞癌肿瘤和头颈部鳞状细胞癌患者数据的多组学分析,实现了这些发现的临床验证。结论:本研究揭示了一种以前未被发现的机制,其中CD109在SCC细胞中作为IL6Rα表达和IL-6介导的信号传导的重要调节因子,促进细胞干性和抗氧化状态,这是介导SCC治疗耐药的已知机制。我们的研究结果为研究CD109/ IL6Rα/STAT3/NRF2通路在SCC中的治疗作用建立了机制验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IL-6-mediated tumorigenicity and antioxidant state in squamous cell carcinoma cells are driven by CD109 via stabilization of IL-6 receptor-alpha and activation of STAT3/NRF2 pathway.

Background: Squamous cell carcinoma (SCC) is a prevalent malignancy and there are limited options to block the recurrence and metastasis that often occur in SCC patients. Although IL-6, a proinflammatory cytokine, is strongly implicated in SCC pathogenesis, its mechanism of action is poorly understood. The GPI-anchored membrane protein CD109 is frequently overexpressed in SCC and is associated with malignant transformation. The current study aims to investigate whether CD109 interacts with IL-6 receptor alpha (IL6Rα) and promotes IL-6-mediated oncogenic signaling to drive SCC progression.

Methods: IL6Rα interaction with CD109 was determined by coimmunoprecipitation, immunohistochemistry, immunofluorescence and FACS analysis using human SCC (oral and vulvar) cell lines and human oral SCC tumors versus control tissue. Regulation of IL-6-induced signaling and antioxidant responses by CD109 was analyzed via STAT3/NRF2/SOD1/HO1 pathway activation. Regulation of IL-6-mediated tumorigenicity by CD109 was determined using stem cell marker expression and a spheroid formation assay. Clinical validation was achieved using genomic and proteomic analysis of oral SCC tumors and of head and neck SCC patient data.

Results: We show that CD109 interacts with and stabilizes IL6Rα expression and promotes IL-6/STAT3/NRF2 pathway in oral and vulvar SCC cells. Loss of CD109 attenuates this pathway leading to loss of cancer cell stemness and decreased expression of superoxide dismutase1 and heme oxygenase-1, antioxidant proteins important for cell survival after chemotherapy. Furthermore, clinical validation of these findings was achieved through multi-omic analysis of oral SCC tumors and of head and neck SCC patient data.

Conclusions: This work uncovers a previously unidentified mechanism in which CD109 serves as an essential regulator of IL6Rα expression and IL-6 mediated signaling in SCC cells, promoting stemness and antioxidant state, mechanisms known to mediate therapy resistance in SCC. Our findings establish a mechanistic validation for investigating the therapeutic utility of the CD109/ IL6Rα/STAT3/NRF2 pathway in SCC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.60
自引率
7.30%
发文量
97
审稿时长
6 weeks
期刊介绍: Experimental Hematology & Oncology is an open access journal that encompasses all aspects of hematology and oncology with an emphasis on preclinical, basic, patient-oriented and translational research. The journal acts as an international platform for sharing laboratory findings in these areas and makes a deliberate effort to publish clinical trials with 'negative' results and basic science studies with provocative findings. Experimental Hematology & Oncology publishes original work, hypothesis, commentaries and timely reviews. With open access and rapid turnaround time from submission to publication, the journal strives to be a hub for disseminating new knowledge and discussing controversial topics for both basic scientists and busy clinicians in the closely related fields of hematology and oncology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信