基于主成分分析与等效电路模型(ECM-PCA)的电阻抗谱识别癌细胞类型。

IF 4.4 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Ruimin Zhou, Daisuke Kawashima, Martin Wekesa Sifuna, Songshi Li, Iori Kojima, Masahiro Takei
{"title":"基于主成分分析与等效电路模型(ECM-PCA)的电阻抗谱识别癌细胞类型。","authors":"Ruimin Zhou, Daisuke Kawashima, Martin Wekesa Sifuna, Songshi Li, Iori Kojima, Masahiro Takei","doi":"10.1109/TBME.2025.3561453","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aims to enhance the identification of cancer cell types using electrical impedance spectroscopy (EIS) by introducing a novel analysis method, ECM-PCA, which integrates an equivalent circuit model with principal component analysis.</p><p><strong>Methods: </strong>The ECM-PCA method addresses the limitations of conventional PCA and kernel PCA (kPCA) in handling non-linear and frequency-dependent data. Impedance data of four cancer cell types (DLD-1, T.Tn, U138, and U87) were acquired across a frequency range of 0.1 MHz to 300 MHz. The ECM-PCA method was applied to analyze the frequency-dependent impedance behaviour and compare its clustering performance with PCA and kPCA.</p><p><strong>Results: </strong>ECM-PCA demonstrated clustering performance comparable to kPCA while capturing the frequency-dependent features of impedance spectra, which kPCA lacks. The phase angle component as the ECM-PCA input achieved the highest Calinski-Harabasz (CH) score of 935, and the method achieved an identification accuracy of 93.6% in the PC1 and PC2 plane.</p><p><strong>Conclusion: </strong>ECM-PCA improves the accuracy and interpretability of cancer cell type identification based on electrical impedance data.</p><p><strong>Significance: </strong>This study highlights the potential of ECM-PCA in advancing cancer diagnostics through enhanced analysis of impedance spectra.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of Cancer cell types by Electrical Impedance Spectroscopy Based on Principal Component Analysis Integrated with Equivalent Circuit Model (ECM-PCA).\",\"authors\":\"Ruimin Zhou, Daisuke Kawashima, Martin Wekesa Sifuna, Songshi Li, Iori Kojima, Masahiro Takei\",\"doi\":\"10.1109/TBME.2025.3561453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study aims to enhance the identification of cancer cell types using electrical impedance spectroscopy (EIS) by introducing a novel analysis method, ECM-PCA, which integrates an equivalent circuit model with principal component analysis.</p><p><strong>Methods: </strong>The ECM-PCA method addresses the limitations of conventional PCA and kernel PCA (kPCA) in handling non-linear and frequency-dependent data. Impedance data of four cancer cell types (DLD-1, T.Tn, U138, and U87) were acquired across a frequency range of 0.1 MHz to 300 MHz. The ECM-PCA method was applied to analyze the frequency-dependent impedance behaviour and compare its clustering performance with PCA and kPCA.</p><p><strong>Results: </strong>ECM-PCA demonstrated clustering performance comparable to kPCA while capturing the frequency-dependent features of impedance spectra, which kPCA lacks. The phase angle component as the ECM-PCA input achieved the highest Calinski-Harabasz (CH) score of 935, and the method achieved an identification accuracy of 93.6% in the PC1 and PC2 plane.</p><p><strong>Conclusion: </strong>ECM-PCA improves the accuracy and interpretability of cancer cell type identification based on electrical impedance data.</p><p><strong>Significance: </strong>This study highlights the potential of ECM-PCA in advancing cancer diagnostics through enhanced analysis of impedance spectra.</p>\",\"PeriodicalId\":13245,\"journal\":{\"name\":\"IEEE Transactions on Biomedical Engineering\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TBME.2025.3561453\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2025.3561453","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在通过引入一种新的分析方法——ECM-PCA,将等效电路模型与主成分分析相结合,提高电阻抗谱(EIS)对癌细胞类型的识别能力。方法:ECM-PCA方法解决了传统PCA和核PCA (kPCA)在处理非线性和频率相关数据方面的局限性。在0.1 MHz至300 MHz的频率范围内获得四种癌细胞类型(DLD-1、t.n n、U138和U87)的阻抗数据。应用ECM-PCA方法分析了频率相关阻抗行为,并将其聚类性能与PCA和kPCA进行了比较。结果:ECM-PCA表现出与kPCA相当的聚类性能,同时捕获了kPCA所缺乏的阻抗谱的频率相关特征。作为ECM-PCA输入的相角分量的Calinski-Harabasz (CH)得分最高,为935,该方法在PC1和PC2平面上的识别准确率为93.6%。结论:ECM-PCA提高了基于电阻抗数据的癌细胞类型鉴定的准确性和可解释性。意义:本研究强调了ECM-PCA通过增强阻抗谱分析在推进癌症诊断方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of Cancer cell types by Electrical Impedance Spectroscopy Based on Principal Component Analysis Integrated with Equivalent Circuit Model (ECM-PCA).

Objective: This study aims to enhance the identification of cancer cell types using electrical impedance spectroscopy (EIS) by introducing a novel analysis method, ECM-PCA, which integrates an equivalent circuit model with principal component analysis.

Methods: The ECM-PCA method addresses the limitations of conventional PCA and kernel PCA (kPCA) in handling non-linear and frequency-dependent data. Impedance data of four cancer cell types (DLD-1, T.Tn, U138, and U87) were acquired across a frequency range of 0.1 MHz to 300 MHz. The ECM-PCA method was applied to analyze the frequency-dependent impedance behaviour and compare its clustering performance with PCA and kPCA.

Results: ECM-PCA demonstrated clustering performance comparable to kPCA while capturing the frequency-dependent features of impedance spectra, which kPCA lacks. The phase angle component as the ECM-PCA input achieved the highest Calinski-Harabasz (CH) score of 935, and the method achieved an identification accuracy of 93.6% in the PC1 and PC2 plane.

Conclusion: ECM-PCA improves the accuracy and interpretability of cancer cell type identification based on electrical impedance data.

Significance: This study highlights the potential of ECM-PCA in advancing cancer diagnostics through enhanced analysis of impedance spectra.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信