A Geetha Devi, Surya Prasada Rao Borra, P Rajesh Kumar
{"title":"基于卷积神经网络的多模态医学图像融合框架。","authors":"A Geetha Devi, Surya Prasada Rao Borra, P Rajesh Kumar","doi":"10.1080/03091902.2025.2488827","DOIUrl":null,"url":null,"abstract":"<p><p>Medical image fusion reduces the time required for medical diagnosis by creating a composite image from a set of images belonging to different modalities. This paper introduces a deep learning framework for medical image fusion, optimising the number of convolutional layers and selecting an appropriate activation function. The conducted experiments demonstrate that employing three convolution layers with a swish activation function for the intermediate layers is sufficient to extract the salient features of the input images. The tuned features are fused using element-wise fusion rules to prevent the loss of minute details crucial for medical images. The comprehensive fused image is then reconstructed from these features using another set of three convolutional layers. Experimental results confirm that the proposed methodology outperforms other conventional medical image fusion methods in terms of various metrics and the quality of the fused image.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":" ","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new multimodal medical image fusion framework using Convolution Neural Networks.\",\"authors\":\"A Geetha Devi, Surya Prasada Rao Borra, P Rajesh Kumar\",\"doi\":\"10.1080/03091902.2025.2488827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Medical image fusion reduces the time required for medical diagnosis by creating a composite image from a set of images belonging to different modalities. This paper introduces a deep learning framework for medical image fusion, optimising the number of convolutional layers and selecting an appropriate activation function. The conducted experiments demonstrate that employing three convolution layers with a swish activation function for the intermediate layers is sufficient to extract the salient features of the input images. The tuned features are fused using element-wise fusion rules to prevent the loss of minute details crucial for medical images. The comprehensive fused image is then reconstructed from these features using another set of three convolutional layers. Experimental results confirm that the proposed methodology outperforms other conventional medical image fusion methods in terms of various metrics and the quality of the fused image.</p>\",\"PeriodicalId\":39637,\"journal\":{\"name\":\"Journal of Medical Engineering and Technology\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03091902.2025.2488827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03091902.2025.2488827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
A new multimodal medical image fusion framework using Convolution Neural Networks.
Medical image fusion reduces the time required for medical diagnosis by creating a composite image from a set of images belonging to different modalities. This paper introduces a deep learning framework for medical image fusion, optimising the number of convolutional layers and selecting an appropriate activation function. The conducted experiments demonstrate that employing three convolution layers with a swish activation function for the intermediate layers is sufficient to extract the salient features of the input images. The tuned features are fused using element-wise fusion rules to prevent the loss of minute details crucial for medical images. The comprehensive fused image is then reconstructed from these features using another set of three convolutional layers. Experimental results confirm that the proposed methodology outperforms other conventional medical image fusion methods in terms of various metrics and the quality of the fused image.
期刊介绍:
The Journal of Medical Engineering & Technology is an international, independent, multidisciplinary, bimonthly journal promoting an understanding of the physiological processes underlying disease processes and the appropriate application of technology. Features include authoritative review papers, the reporting of original research, and evaluation reports on new and existing techniques and devices. Each issue of the journal contains a comprehensive information service which provides news relevant to the world of medical technology, details of new products, book reviews, and selected contents of related journals.