Onural Ozhan, Necip Ermis, Osman Celbis, Emine Samdanci, Semih Petekkaya, Mucahit Oruc, Ozcan Soylu, Pelin Koparir, Ahmet Acet, Hakan Parlakpinar
{"title":"合成大麻素JWH-018对大鼠急性和亚急性心血管的影响。","authors":"Onural Ozhan, Necip Ermis, Osman Celbis, Emine Samdanci, Semih Petekkaya, Mucahit Oruc, Ozcan Soylu, Pelin Koparir, Ahmet Acet, Hakan Parlakpinar","doi":"10.1007/s11419-025-00720-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study investigates the cardiovascular effects of the synthetic cannabinoid naphthalene-1-yl-(1-pentylindole-3-yl)methanone (JWH-018) in rats. The research aims to evaluate the pharmacologic, cardiologic, biochemical, and histopathological effects of acute and subacute administration at low and high doses. The primary research question is how JWH-018 impacts heart function, blood pressure, ECG patterns, and cardiac tissue integrity.</p><p><strong>Methods: </strong>Wistar albino rats were divided into five groups: control, acute low-dose (ALD, 0.5 mg/kg), acute high-dose (AHD, 5 mg/kg), subacute low-dose (SALD, 0.5 mg/kg for 14 days), and subacute high-dose (SAHD, 5 mg/kg for 14 days). Cardiovascular effects were assessed using echocardiography, hemodynamic and ECG analysis, histopathology, biochemical markers, and LC-MS/MS quantification of JWH-018 and its metabolites in heart tissue.</p><p><strong>Results: </strong>Acute high-dose JWH-018 caused bradycardia and hypotension, while subacute high-dose increased heart rate but continued to lower blood pressure. JWH-018 induced cardiac arrhythmias, conduction blocks, and ischemic ECG changes, with prolonged QT intervals in subacute high-dose rats. Histopathological findings revealed myocardial infarction-like features, including contraction bands and ischemic damage, particularly in subacute groups. Elevated pro-BNP and triglycerides indicated cardiac stress and metabolic effects. JWH-018 and its metabolites were detected in heart tissue, primarily in high-dose groups.</p><p><strong>Conclusions: </strong>JWH-018 has significant cardiovascular risks, causing heart rate dysregulation, hypotension, arrhythmias, and ischemic damage. These effects depend on dose and duration. The study highlights the potential dangers of synthetic cannabinoids, emphasizing that they should not be considered safe alternatives to natural cannabis.</p>","PeriodicalId":12329,"journal":{"name":"Forensic Toxicology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acute and subacute cardiovascular effects of synthetic cannabinoid JWH-018 in rat.\",\"authors\":\"Onural Ozhan, Necip Ermis, Osman Celbis, Emine Samdanci, Semih Petekkaya, Mucahit Oruc, Ozcan Soylu, Pelin Koparir, Ahmet Acet, Hakan Parlakpinar\",\"doi\":\"10.1007/s11419-025-00720-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study investigates the cardiovascular effects of the synthetic cannabinoid naphthalene-1-yl-(1-pentylindole-3-yl)methanone (JWH-018) in rats. The research aims to evaluate the pharmacologic, cardiologic, biochemical, and histopathological effects of acute and subacute administration at low and high doses. The primary research question is how JWH-018 impacts heart function, blood pressure, ECG patterns, and cardiac tissue integrity.</p><p><strong>Methods: </strong>Wistar albino rats were divided into five groups: control, acute low-dose (ALD, 0.5 mg/kg), acute high-dose (AHD, 5 mg/kg), subacute low-dose (SALD, 0.5 mg/kg for 14 days), and subacute high-dose (SAHD, 5 mg/kg for 14 days). Cardiovascular effects were assessed using echocardiography, hemodynamic and ECG analysis, histopathology, biochemical markers, and LC-MS/MS quantification of JWH-018 and its metabolites in heart tissue.</p><p><strong>Results: </strong>Acute high-dose JWH-018 caused bradycardia and hypotension, while subacute high-dose increased heart rate but continued to lower blood pressure. JWH-018 induced cardiac arrhythmias, conduction blocks, and ischemic ECG changes, with prolonged QT intervals in subacute high-dose rats. Histopathological findings revealed myocardial infarction-like features, including contraction bands and ischemic damage, particularly in subacute groups. Elevated pro-BNP and triglycerides indicated cardiac stress and metabolic effects. JWH-018 and its metabolites were detected in heart tissue, primarily in high-dose groups.</p><p><strong>Conclusions: </strong>JWH-018 has significant cardiovascular risks, causing heart rate dysregulation, hypotension, arrhythmias, and ischemic damage. These effects depend on dose and duration. The study highlights the potential dangers of synthetic cannabinoids, emphasizing that they should not be considered safe alternatives to natural cannabis.</p>\",\"PeriodicalId\":12329,\"journal\":{\"name\":\"Forensic Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11419-025-00720-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11419-025-00720-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Acute and subacute cardiovascular effects of synthetic cannabinoid JWH-018 in rat.
Purpose: This study investigates the cardiovascular effects of the synthetic cannabinoid naphthalene-1-yl-(1-pentylindole-3-yl)methanone (JWH-018) in rats. The research aims to evaluate the pharmacologic, cardiologic, biochemical, and histopathological effects of acute and subacute administration at low and high doses. The primary research question is how JWH-018 impacts heart function, blood pressure, ECG patterns, and cardiac tissue integrity.
Methods: Wistar albino rats were divided into five groups: control, acute low-dose (ALD, 0.5 mg/kg), acute high-dose (AHD, 5 mg/kg), subacute low-dose (SALD, 0.5 mg/kg for 14 days), and subacute high-dose (SAHD, 5 mg/kg for 14 days). Cardiovascular effects were assessed using echocardiography, hemodynamic and ECG analysis, histopathology, biochemical markers, and LC-MS/MS quantification of JWH-018 and its metabolites in heart tissue.
Results: Acute high-dose JWH-018 caused bradycardia and hypotension, while subacute high-dose increased heart rate but continued to lower blood pressure. JWH-018 induced cardiac arrhythmias, conduction blocks, and ischemic ECG changes, with prolonged QT intervals in subacute high-dose rats. Histopathological findings revealed myocardial infarction-like features, including contraction bands and ischemic damage, particularly in subacute groups. Elevated pro-BNP and triglycerides indicated cardiac stress and metabolic effects. JWH-018 and its metabolites were detected in heart tissue, primarily in high-dose groups.
Conclusions: JWH-018 has significant cardiovascular risks, causing heart rate dysregulation, hypotension, arrhythmias, and ischemic damage. These effects depend on dose and duration. The study highlights the potential dangers of synthetic cannabinoids, emphasizing that they should not be considered safe alternatives to natural cannabis.
期刊介绍:
The journal Forensic Toxicology provides an international forum for publication of studies on toxic substances, drugs of abuse, doping agents, chemical warfare agents, and their metabolisms and analyses, which are related to laws and ethics. It includes original articles, reviews, mini-reviews, short communications, and case reports. Although a major focus of the journal is on the development or improvement of analytical methods for the above-mentioned chemicals in human matrices, appropriate studies with animal experiments are also published.
Forensic Toxicology is the official publication of the Japanese Association of Forensic Toxicology (JAFT) and is the continuation of the Japanese Journal of Forensic Toxicology (ISSN 0915-9606).