Liad Doniza, Mitchel Lee, Tamar Blumenfeld-Katzir, Moran Artzi, Dafna Ben-Bashat, Orna Aizenstein, Dvir Radunsky, Fenella Kirkham, George Thomas, Rimona S Weil, Karin Shmueli, Noam Ben-Eliezer
{"title":"高分辨率定量R2*, T2*和磁化率图(QSM)的噪声传播和MP-PCA图像去噪。","authors":"Liad Doniza, Mitchel Lee, Tamar Blumenfeld-Katzir, Moran Artzi, Dafna Ben-Bashat, Orna Aizenstein, Dvir Radunsky, Fenella Kirkham, George Thomas, Rimona S Weil, Karin Shmueli, Noam Ben-Eliezer","doi":"10.1109/TBME.2025.3566561","DOIUrl":null,"url":null,"abstract":"<p><p>: Quantitative Susceptibility Mapping (QSM) measures magnetic susceptibility of tissues, aiding in the detection of pathologies like traumatic brain injury, cerebral microbleeds, Parkinson's disease, and multiple sclerosis, through analysis of variations in substances such as iron and calcium. Despite its clinical value, using high-resolution QSM (voxel sizes < 1 mm3) reduces signal-to-noise ratio (SNR), which compromises diagnostic quality.</p><p><strong>Methods: </strong>Denoising of T<sub>2</sub><sup>*</sup> -weighted (T<sub>2</sub><sup>*</sup>) data was implemented using Marchenko-Pastur Principal Component Analysis (MP-PCA), allowing to enhance the quality of R<sub>2</sub><sup>*</sup>, T<sub>2</sub><sup>*</sup>, and QSM maps. Proof of concept of the denoising technique was demonstrated on a numerical phantom, healthy subjects, and patients with brain metastases and sickle cell anemia.</p><p><strong>Results: </strong>Effective and robust denoising was observed across different scan settings, offering higher SNR and improved accuracy. Noise propagation was analyzed between T<sub>2</sub><sup>*</sup>w, R<sub>2</sub><sup>*</sup>, and T<sub>2</sub><sup>*</sup> values, revealing augmentation of noise in T<sub>2</sub><sup>*</sup>w compared to R<sub>2</sub><sup>*</sup> values.</p><p><strong>Conclusions: </strong>The use of MP-PCA denoising allows the collection of high resolution (∼0.5 mm3) QSM data at clinical scan times, without compromising SNR.</p><p><strong>Significance: </strong>The presented pipeline could enhance the diagnosis of various neurological diseases by providing higher-definition mapping of small vessels and of variations in iron or calcium.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noise propagation and MP-PCA image denoising for high-resolution quantitative R<sub>2</sub><sup>*</sup>, T<sub>2</sub><sup>*</sup>, and magnetic susceptibility mapping (QSM).\",\"authors\":\"Liad Doniza, Mitchel Lee, Tamar Blumenfeld-Katzir, Moran Artzi, Dafna Ben-Bashat, Orna Aizenstein, Dvir Radunsky, Fenella Kirkham, George Thomas, Rimona S Weil, Karin Shmueli, Noam Ben-Eliezer\",\"doi\":\"10.1109/TBME.2025.3566561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>: Quantitative Susceptibility Mapping (QSM) measures magnetic susceptibility of tissues, aiding in the detection of pathologies like traumatic brain injury, cerebral microbleeds, Parkinson's disease, and multiple sclerosis, through analysis of variations in substances such as iron and calcium. Despite its clinical value, using high-resolution QSM (voxel sizes < 1 mm3) reduces signal-to-noise ratio (SNR), which compromises diagnostic quality.</p><p><strong>Methods: </strong>Denoising of T<sub>2</sub><sup>*</sup> -weighted (T<sub>2</sub><sup>*</sup>) data was implemented using Marchenko-Pastur Principal Component Analysis (MP-PCA), allowing to enhance the quality of R<sub>2</sub><sup>*</sup>, T<sub>2</sub><sup>*</sup>, and QSM maps. Proof of concept of the denoising technique was demonstrated on a numerical phantom, healthy subjects, and patients with brain metastases and sickle cell anemia.</p><p><strong>Results: </strong>Effective and robust denoising was observed across different scan settings, offering higher SNR and improved accuracy. Noise propagation was analyzed between T<sub>2</sub><sup>*</sup>w, R<sub>2</sub><sup>*</sup>, and T<sub>2</sub><sup>*</sup> values, revealing augmentation of noise in T<sub>2</sub><sup>*</sup>w compared to R<sub>2</sub><sup>*</sup> values.</p><p><strong>Conclusions: </strong>The use of MP-PCA denoising allows the collection of high resolution (∼0.5 mm3) QSM data at clinical scan times, without compromising SNR.</p><p><strong>Significance: </strong>The presented pipeline could enhance the diagnosis of various neurological diseases by providing higher-definition mapping of small vessels and of variations in iron or calcium.</p>\",\"PeriodicalId\":13245,\"journal\":{\"name\":\"IEEE Transactions on Biomedical Engineering\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TBME.2025.3566561\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2025.3566561","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Noise propagation and MP-PCA image denoising for high-resolution quantitative R2*, T2*, and magnetic susceptibility mapping (QSM).
: Quantitative Susceptibility Mapping (QSM) measures magnetic susceptibility of tissues, aiding in the detection of pathologies like traumatic brain injury, cerebral microbleeds, Parkinson's disease, and multiple sclerosis, through analysis of variations in substances such as iron and calcium. Despite its clinical value, using high-resolution QSM (voxel sizes < 1 mm3) reduces signal-to-noise ratio (SNR), which compromises diagnostic quality.
Methods: Denoising of T2* -weighted (T2*) data was implemented using Marchenko-Pastur Principal Component Analysis (MP-PCA), allowing to enhance the quality of R2*, T2*, and QSM maps. Proof of concept of the denoising technique was demonstrated on a numerical phantom, healthy subjects, and patients with brain metastases and sickle cell anemia.
Results: Effective and robust denoising was observed across different scan settings, offering higher SNR and improved accuracy. Noise propagation was analyzed between T2*w, R2*, and T2* values, revealing augmentation of noise in T2*w compared to R2* values.
Conclusions: The use of MP-PCA denoising allows the collection of high resolution (∼0.5 mm3) QSM data at clinical scan times, without compromising SNR.
Significance: The presented pipeline could enhance the diagnosis of various neurological diseases by providing higher-definition mapping of small vessels and of variations in iron or calcium.
期刊介绍:
IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.