用于智能RDF知识图构建的大型语言模型:医学本体映射的结果。

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2025-04-25 eCollection Date: 2025-01-01 DOI:10.3389/frai.2025.1546179
Apostolos Mavridis, Stergios Tegos, Christos Anastasiou, Maria Papoutsoglou, Georgios Meditskos
{"title":"用于智能RDF知识图构建的大型语言模型:医学本体映射的结果。","authors":"Apostolos Mavridis, Stergios Tegos, Christos Anastasiou, Maria Papoutsoglou, Georgios Meditskos","doi":"10.3389/frai.2025.1546179","DOIUrl":null,"url":null,"abstract":"<p><p>The exponential growth of digital data, particularly in specialized domains like healthcare, necessitates advanced knowledge representation and integration techniques. RDF knowledge graphs offer a powerful solution, yet their creation and maintenance, especially for complex medical ontologies like Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT), remain challenging. Traditional methods often struggle with the scale, heterogeneity, and semantic complexity of medical data. This paper introduces a methodology leveraging the contextual understanding and reasoning capabilities of Large Language Models (LLMs) to automate and enhance medical ontology mapping for Resource Description Framework (RDF) knowledge graph construction. We conduct a comprehensive comparative analysis of six systems-GPT-4o, Claude 3.5 Sonnet v2, Gemini 1.5 Pro, Llama 3.3 70B, DeepSeek R1, and BERTMap-using a novel evaluation framework that combines quantitative metrics (precision, recall, and F1-score) with qualitative assessments of semantic accuracy. Our approach integrates a data preprocessing pipeline with an LLM-powered semantic mapping engine, utilizing BioBERT embeddings and ChromaDB vector database for efficient concept retrieval. Experimental results on a dataset of 108 medical terms demonstrate the superior performance of modern LLMs, particularly GPT-4o, achieving a precision of 93.75% and an F1-score of 96.26%. These findings highlight the potential of LLMs in bridging the gap between structured medical data and semantic knowledge representation, toward more accurate and interoperable medical knowledge graphs.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"8 ","pages":"1546179"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12061982/pdf/","citationCount":"0","resultStr":"{\"title\":\"Large language models for intelligent RDF knowledge graph construction: results from medical ontology mapping.\",\"authors\":\"Apostolos Mavridis, Stergios Tegos, Christos Anastasiou, Maria Papoutsoglou, Georgios Meditskos\",\"doi\":\"10.3389/frai.2025.1546179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The exponential growth of digital data, particularly in specialized domains like healthcare, necessitates advanced knowledge representation and integration techniques. RDF knowledge graphs offer a powerful solution, yet their creation and maintenance, especially for complex medical ontologies like Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT), remain challenging. Traditional methods often struggle with the scale, heterogeneity, and semantic complexity of medical data. This paper introduces a methodology leveraging the contextual understanding and reasoning capabilities of Large Language Models (LLMs) to automate and enhance medical ontology mapping for Resource Description Framework (RDF) knowledge graph construction. We conduct a comprehensive comparative analysis of six systems-GPT-4o, Claude 3.5 Sonnet v2, Gemini 1.5 Pro, Llama 3.3 70B, DeepSeek R1, and BERTMap-using a novel evaluation framework that combines quantitative metrics (precision, recall, and F1-score) with qualitative assessments of semantic accuracy. Our approach integrates a data preprocessing pipeline with an LLM-powered semantic mapping engine, utilizing BioBERT embeddings and ChromaDB vector database for efficient concept retrieval. Experimental results on a dataset of 108 medical terms demonstrate the superior performance of modern LLMs, particularly GPT-4o, achieving a precision of 93.75% and an F1-score of 96.26%. These findings highlight the potential of LLMs in bridging the gap between structured medical data and semantic knowledge representation, toward more accurate and interoperable medical knowledge graphs.</p>\",\"PeriodicalId\":33315,\"journal\":{\"name\":\"Frontiers in Artificial Intelligence\",\"volume\":\"8 \",\"pages\":\"1546179\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12061982/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frai.2025.1546179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2025.1546179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

数字数据的指数级增长,特别是在医疗保健等专业领域,需要先进的知识表示和集成技术。RDF知识图提供了一个强大的解决方案,但是它们的创建和维护仍然具有挑战性,特别是对于复杂的医学本体,如系统化医学术语-临床术语(SNOMED CT)。传统方法经常与医疗数据的规模、异构性和语义复杂性作斗争。本文介绍了一种利用大型语言模型(llm)的上下文理解和推理能力来自动化和增强医学本体映射的方法,用于资源描述框架(RDF)知识图的构建。我们对gpt - 40、Claude 3.5 Sonnet v2、Gemini 1.5 Pro、Llama 3.3 70B、DeepSeek R1和bertmap这六个系统进行了全面的比较分析,使用了一种新的评估框架,该框架结合了定量指标(精度、召回率和f1分数)和语义准确性的定性评估。我们的方法将数据预处理管道与llm支持的语义映射引擎集成在一起,利用BioBERT嵌入和ChromaDB矢量数据库进行高效的概念检索。在108个医学术语数据集上的实验结果表明,现代llm,特别是gpt - 40,具有优异的性能,达到了93.75%的精度和96.26%的f1分数。这些发现突出了llm在弥合结构化医学数据和语义知识表示之间的差距,朝着更准确和可互操作的医学知识图发展的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large language models for intelligent RDF knowledge graph construction: results from medical ontology mapping.

The exponential growth of digital data, particularly in specialized domains like healthcare, necessitates advanced knowledge representation and integration techniques. RDF knowledge graphs offer a powerful solution, yet their creation and maintenance, especially for complex medical ontologies like Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT), remain challenging. Traditional methods often struggle with the scale, heterogeneity, and semantic complexity of medical data. This paper introduces a methodology leveraging the contextual understanding and reasoning capabilities of Large Language Models (LLMs) to automate and enhance medical ontology mapping for Resource Description Framework (RDF) knowledge graph construction. We conduct a comprehensive comparative analysis of six systems-GPT-4o, Claude 3.5 Sonnet v2, Gemini 1.5 Pro, Llama 3.3 70B, DeepSeek R1, and BERTMap-using a novel evaluation framework that combines quantitative metrics (precision, recall, and F1-score) with qualitative assessments of semantic accuracy. Our approach integrates a data preprocessing pipeline with an LLM-powered semantic mapping engine, utilizing BioBERT embeddings and ChromaDB vector database for efficient concept retrieval. Experimental results on a dataset of 108 medical terms demonstrate the superior performance of modern LLMs, particularly GPT-4o, achieving a precision of 93.75% and an F1-score of 96.26%. These findings highlight the potential of LLMs in bridging the gap between structured medical data and semantic knowledge representation, toward more accurate and interoperable medical knowledge graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信