Ningning Yao, Na Jing, Jianzhong Lin, Wenxia Niu, Wenxing Yan, Hongqin Yuan, Zeyi Xiong, Qing Hou, Xiaxi Qiao, Quanming Liu, Jianzhong Cao, Ning Li
{"title":"用于肿瘤免疫治疗的患者源性肿瘤类器官:培养技术及临床应用。","authors":"Ningning Yao, Na Jing, Jianzhong Lin, Wenxia Niu, Wenxing Yan, Hongqin Yuan, Zeyi Xiong, Qing Hou, Xiaxi Qiao, Quanming Liu, Jianzhong Cao, Ning Li","doi":"10.1007/s10637-025-01523-w","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer immunotherapy has revolutionized tumor treatment. However, robust and effective testing platforms remain lacking, especially for the selection of the optimized therapy at the patient-specific level. Unlike conventional treatment evaluations, testing platforms for cancer immunotherapy must incorporate not only tumor cells but also the tumor microenvironment (TME), including immune components. Recently, emergence of patient-derived tumor organoids (PDTOs), an in vitro preclinical model, has provided a novel approach for studying tumor evolution and assessing treatment responses, and shows great potential when coculturing with immune cells to study the mechanisms of immunotherapy efficacy and resistance. However, traditional organoid technology is limited in capturing the full impact of the TME on tumor behaviors due to the absence of stromal components. To circumvent these restrictions, complex organoid cocultures with immune cells, cancer-associated fibroblasts and vasculatures are developed. In this review, we summarized recent advances in PDTO culture techniques for modeling the TME and explored the application of complex tumor organoids in cancer immunotherapy.</p>","PeriodicalId":14513,"journal":{"name":"Investigational New Drugs","volume":"43 2","pages":"394-404"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12048417/pdf/","citationCount":"0","resultStr":"{\"title\":\"Patient-derived tumor organoids for cancer immunotherapy: culture techniques and clinical application.\",\"authors\":\"Ningning Yao, Na Jing, Jianzhong Lin, Wenxia Niu, Wenxing Yan, Hongqin Yuan, Zeyi Xiong, Qing Hou, Xiaxi Qiao, Quanming Liu, Jianzhong Cao, Ning Li\",\"doi\":\"10.1007/s10637-025-01523-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer immunotherapy has revolutionized tumor treatment. However, robust and effective testing platforms remain lacking, especially for the selection of the optimized therapy at the patient-specific level. Unlike conventional treatment evaluations, testing platforms for cancer immunotherapy must incorporate not only tumor cells but also the tumor microenvironment (TME), including immune components. Recently, emergence of patient-derived tumor organoids (PDTOs), an in vitro preclinical model, has provided a novel approach for studying tumor evolution and assessing treatment responses, and shows great potential when coculturing with immune cells to study the mechanisms of immunotherapy efficacy and resistance. However, traditional organoid technology is limited in capturing the full impact of the TME on tumor behaviors due to the absence of stromal components. To circumvent these restrictions, complex organoid cocultures with immune cells, cancer-associated fibroblasts and vasculatures are developed. In this review, we summarized recent advances in PDTO culture techniques for modeling the TME and explored the application of complex tumor organoids in cancer immunotherapy.</p>\",\"PeriodicalId\":14513,\"journal\":{\"name\":\"Investigational New Drugs\",\"volume\":\"43 2\",\"pages\":\"394-404\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12048417/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Investigational New Drugs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10637-025-01523-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigational New Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10637-025-01523-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Patient-derived tumor organoids for cancer immunotherapy: culture techniques and clinical application.
Cancer immunotherapy has revolutionized tumor treatment. However, robust and effective testing platforms remain lacking, especially for the selection of the optimized therapy at the patient-specific level. Unlike conventional treatment evaluations, testing platforms for cancer immunotherapy must incorporate not only tumor cells but also the tumor microenvironment (TME), including immune components. Recently, emergence of patient-derived tumor organoids (PDTOs), an in vitro preclinical model, has provided a novel approach for studying tumor evolution and assessing treatment responses, and shows great potential when coculturing with immune cells to study the mechanisms of immunotherapy efficacy and resistance. However, traditional organoid technology is limited in capturing the full impact of the TME on tumor behaviors due to the absence of stromal components. To circumvent these restrictions, complex organoid cocultures with immune cells, cancer-associated fibroblasts and vasculatures are developed. In this review, we summarized recent advances in PDTO culture techniques for modeling the TME and explored the application of complex tumor organoids in cancer immunotherapy.
期刊介绍:
The development of new anticancer agents is one of the most rapidly changing aspects of cancer research. Investigational New Drugs provides a forum for the rapid dissemination of information on new anticancer agents. The papers published are of interest to the medical chemist, toxicologist, pharmacist, pharmacologist, biostatistician and clinical oncologist. Investigational New Drugs provides the fastest possible publication of new discoveries and results for the whole community of scientists developing anticancer agents.