基于超声的机器学习模型预测乳腺癌肿瘤浸润淋巴细胞。

IF 2.7 4区 医学 Q3 ONCOLOGY
Technology in Cancer Research & Treatment Pub Date : 2025-01-01 Epub Date: 2025-04-17 DOI:10.1177/15330338251334453
Boya Liu, Xiangrong Gu, Danling Xie, Bing Zhao, Dong Han, Yuli Zhang, Tao Li, Jingqin Fang
{"title":"基于超声的机器学习模型预测乳腺癌肿瘤浸润淋巴细胞。","authors":"Boya Liu, Xiangrong Gu, Danling Xie, Bing Zhao, Dong Han, Yuli Zhang, Tao Li, Jingqin Fang","doi":"10.1177/15330338251334453","DOIUrl":null,"url":null,"abstract":"<p><p>IntroductionTumor-infiltrating lymphocytes (TILs) are key indicators of immune response and prognosis in breast cancer (BC). Accurate prediction of TIL levels is essential for guiding personalized treatment strategies. This study aimed to develop and evaluate machine learning models using ultrasound-derived radiomics and clinical features to predict TIL levels in BC.MethodsThis retrospective study included 256 BC patients between January 2019 and August 2023, who were randomly divided into training (n = 179) and test (n = 77) cohorts. Radiomics features were extracted from the intratumor and peritumor regions in ultrasound images. Feature selection was performed using the \"Boruta\" package in R to iteratively remove non-significant features. Extra Trees Classifier was used to construct radiomics and clinical models. A combined radiomics-clinical (R-C) model was also developed. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, and decision curve analysis (DCA) to assess clinical utility. A nomogram was created based on the best-performing model.ResultsA total of 1712 radiomics features were extracted from the intratumor and peritumor regions. The Boruta method selected five key features (four from the peritumor and one from the intratumor) for model construction. Clinical features, including immunohistochemistry, tumor size, shape, and echo characteristics, showed significant differences between high (≥10%) and low (<10%) TIL groups. Both the R-C and radiomics models outperformed the clinical model in the test cohort (area under the curve values of 0.869/0.838 vs 0.627, <i>P</i> < .05). Calibration curves and Brier scores demonstrated superior accuracy and calibration for the R-C and radiomics models. DCA revealed the highest net benefit of the R-C model at intermediate threshold probabilities.ConclusionUltrasound-derived radiomics effectively predicts TIL levels in BC, providing valuable insights for personalized treatment and surveillance strategies.</p>","PeriodicalId":22203,"journal":{"name":"Technology in Cancer Research & Treatment","volume":"24 ","pages":"15330338251334453"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035158/pdf/","citationCount":"0","resultStr":"{\"title\":\"An Ultrasound-based Machine Learning Model for Predicting Tumor-Infiltrating Lymphocytes in Breast Cancer.\",\"authors\":\"Boya Liu, Xiangrong Gu, Danling Xie, Bing Zhao, Dong Han, Yuli Zhang, Tao Li, Jingqin Fang\",\"doi\":\"10.1177/15330338251334453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>IntroductionTumor-infiltrating lymphocytes (TILs) are key indicators of immune response and prognosis in breast cancer (BC). Accurate prediction of TIL levels is essential for guiding personalized treatment strategies. This study aimed to develop and evaluate machine learning models using ultrasound-derived radiomics and clinical features to predict TIL levels in BC.MethodsThis retrospective study included 256 BC patients between January 2019 and August 2023, who were randomly divided into training (n = 179) and test (n = 77) cohorts. Radiomics features were extracted from the intratumor and peritumor regions in ultrasound images. Feature selection was performed using the \\\"Boruta\\\" package in R to iteratively remove non-significant features. Extra Trees Classifier was used to construct radiomics and clinical models. A combined radiomics-clinical (R-C) model was also developed. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, and decision curve analysis (DCA) to assess clinical utility. A nomogram was created based on the best-performing model.ResultsA total of 1712 radiomics features were extracted from the intratumor and peritumor regions. The Boruta method selected five key features (four from the peritumor and one from the intratumor) for model construction. Clinical features, including immunohistochemistry, tumor size, shape, and echo characteristics, showed significant differences between high (≥10%) and low (<10%) TIL groups. Both the R-C and radiomics models outperformed the clinical model in the test cohort (area under the curve values of 0.869/0.838 vs 0.627, <i>P</i> < .05). Calibration curves and Brier scores demonstrated superior accuracy and calibration for the R-C and radiomics models. DCA revealed the highest net benefit of the R-C model at intermediate threshold probabilities.ConclusionUltrasound-derived radiomics effectively predicts TIL levels in BC, providing valuable insights for personalized treatment and surveillance strategies.</p>\",\"PeriodicalId\":22203,\"journal\":{\"name\":\"Technology in Cancer Research & Treatment\",\"volume\":\"24 \",\"pages\":\"15330338251334453\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035158/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technology in Cancer Research & Treatment\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/15330338251334453\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology in Cancer Research & Treatment","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15330338251334453","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肿瘤浸润淋巴细胞(til)是乳腺癌(BC)免疫反应和预后的关键指标。准确预测TIL水平对于指导个性化治疗策略至关重要。本研究旨在利用超声衍生放射组学和临床特征开发和评估机器学习模型,以预测BC中的TIL水平。方法回顾性研究纳入2019年1月至2023年8月期间的256例BC患者,随机分为训练组(n = 179)和检验组(n = 77)。从超声图像中提取肿瘤内和肿瘤周围区域的放射组学特征。使用R中的“Boruta”包进行特征选择,迭代地删除不重要的特征。Extra Trees Classifier用于构建放射组学和临床模型。同时建立了放射组学-临床(R-C)联合模型。采用受试者工作特征曲线下面积(AUC)、准确性、敏感性、特异性和决策曲线分析(DCA)来评估模型的临床应用。基于最佳表现模型创建了一个nomogram。结果从肿瘤内和肿瘤周围共提取了1712个放射组学特征。Boruta方法选取5个关键特征(4个来自肿瘤周围,1个来自肿瘤内部)进行模型构建。临床特征,包括免疫组织化学、肿瘤大小、形状和回声特征,在高(≥10%)和低(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Ultrasound-based Machine Learning Model for Predicting Tumor-Infiltrating Lymphocytes in Breast Cancer.

IntroductionTumor-infiltrating lymphocytes (TILs) are key indicators of immune response and prognosis in breast cancer (BC). Accurate prediction of TIL levels is essential for guiding personalized treatment strategies. This study aimed to develop and evaluate machine learning models using ultrasound-derived radiomics and clinical features to predict TIL levels in BC.MethodsThis retrospective study included 256 BC patients between January 2019 and August 2023, who were randomly divided into training (n = 179) and test (n = 77) cohorts. Radiomics features were extracted from the intratumor and peritumor regions in ultrasound images. Feature selection was performed using the "Boruta" package in R to iteratively remove non-significant features. Extra Trees Classifier was used to construct radiomics and clinical models. A combined radiomics-clinical (R-C) model was also developed. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, and decision curve analysis (DCA) to assess clinical utility. A nomogram was created based on the best-performing model.ResultsA total of 1712 radiomics features were extracted from the intratumor and peritumor regions. The Boruta method selected five key features (four from the peritumor and one from the intratumor) for model construction. Clinical features, including immunohistochemistry, tumor size, shape, and echo characteristics, showed significant differences between high (≥10%) and low (<10%) TIL groups. Both the R-C and radiomics models outperformed the clinical model in the test cohort (area under the curve values of 0.869/0.838 vs 0.627, P < .05). Calibration curves and Brier scores demonstrated superior accuracy and calibration for the R-C and radiomics models. DCA revealed the highest net benefit of the R-C model at intermediate threshold probabilities.ConclusionUltrasound-derived radiomics effectively predicts TIL levels in BC, providing valuable insights for personalized treatment and surveillance strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
202
审稿时长
2 months
期刊介绍: Technology in Cancer Research & Treatment (TCRT) is a JCR-ranked, broad-spectrum, open access, peer-reviewed publication whose aim is to provide researchers and clinicians with a platform to share and discuss developments in the prevention, diagnosis, treatment, and monitoring of cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信