高磁场下耦合核自旋系综的磁化和极化。

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Danila A Barskiy, Andrey N Pravdivtsev
{"title":"高磁场下耦合核自旋系综的磁化和极化。","authors":"Danila A Barskiy, Andrey N Pravdivtsev","doi":"10.1002/cphc.202500092","DOIUrl":null,"url":null,"abstract":"<p><p>In nuclear magnetic resonance (NMR), the bulk magnetization of a sample is commonly assumed to be proportional to spin polarization, with each spin of the same type contributing equally to the measured signal. Herein, the high-field theorem for general spin-I systems (where I is the spin quantum number): the total measurable NMR signal remains unaffected by the grouping of spins into equivalent units (e.g., molecules) is proved, provided the system is at thermodynamic equilibrium in the high field limit ( <math> <semantics><mrow><mi>ℏ</mi> <msub><mi>ω</mi> <mn>0</mn></msub> <mo>≫</mo> <mo>|</mo> <msub><mi>H</mi> <mrow><mtext>spin</mtext> <mo>-</mo> <mtext>spin</mtext></mrow> </msub> <mo>|</mo></mrow> <annotation>$$ \\hslash {\\omega }_{0}\\gg |{H}_{\\text{spin}-\\text{spin}}|$$</annotation></semantics> </math> , where <math> <semantics> <mrow><msub><mi>ω</mi> <mn>0</mn></msub> </mrow> <annotation>$\\left(\\omega\\right)_{0}$</annotation></semantics> </math> is the Larmor frequency and <math> <semantics> <mrow><mrow><mo>|</mo> <mrow><msub><mi>H</mi> <mrow><mtext>spin</mtext> <mo>-</mo> <mtext>spin</mtext></mrow> </msub> </mrow> <mo>|</mo></mrow> </mrow> <annotation>$\\left|\\right. H_{\\text{spin} - \\text{spin}} \\left|\\right.$</annotation></semantics> </math> characterizes internal spin-spin interactions). The results are derived using both magnetization equations and density matrix formalism. The theorem, however, does not extend to conditions far from thermodynamic equilibrium (e.g., hyperpolarization), NMR of solids in the regime when quadrupolar or dipole-dipole interactions are not negligible, and zero- to ultralow-field NMR. Three educational problems designed to deepen understanding of the material in classroom settings are also presented. This work reinforces established principles in magnetic resonance but also highlights areas for further exploration.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e2500092"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetization and Polarization of Coupled Nuclear Spins Ensembles at High Magnetic Fields.\",\"authors\":\"Danila A Barskiy, Andrey N Pravdivtsev\",\"doi\":\"10.1002/cphc.202500092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In nuclear magnetic resonance (NMR), the bulk magnetization of a sample is commonly assumed to be proportional to spin polarization, with each spin of the same type contributing equally to the measured signal. Herein, the high-field theorem for general spin-I systems (where I is the spin quantum number): the total measurable NMR signal remains unaffected by the grouping of spins into equivalent units (e.g., molecules) is proved, provided the system is at thermodynamic equilibrium in the high field limit ( <math> <semantics><mrow><mi>ℏ</mi> <msub><mi>ω</mi> <mn>0</mn></msub> <mo>≫</mo> <mo>|</mo> <msub><mi>H</mi> <mrow><mtext>spin</mtext> <mo>-</mo> <mtext>spin</mtext></mrow> </msub> <mo>|</mo></mrow> <annotation>$$ \\\\hslash {\\\\omega }_{0}\\\\gg |{H}_{\\\\text{spin}-\\\\text{spin}}|$$</annotation></semantics> </math> , where <math> <semantics> <mrow><msub><mi>ω</mi> <mn>0</mn></msub> </mrow> <annotation>$\\\\left(\\\\omega\\\\right)_{0}$</annotation></semantics> </math> is the Larmor frequency and <math> <semantics> <mrow><mrow><mo>|</mo> <mrow><msub><mi>H</mi> <mrow><mtext>spin</mtext> <mo>-</mo> <mtext>spin</mtext></mrow> </msub> </mrow> <mo>|</mo></mrow> </mrow> <annotation>$\\\\left|\\\\right. H_{\\\\text{spin} - \\\\text{spin}} \\\\left|\\\\right.$</annotation></semantics> </math> characterizes internal spin-spin interactions). The results are derived using both magnetization equations and density matrix formalism. The theorem, however, does not extend to conditions far from thermodynamic equilibrium (e.g., hyperpolarization), NMR of solids in the regime when quadrupolar or dipole-dipole interactions are not negligible, and zero- to ultralow-field NMR. Three educational problems designed to deepen understanding of the material in classroom settings are also presented. This work reinforces established principles in magnetic resonance but also highlights areas for further exploration.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":\" \",\"pages\":\"e2500092\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202500092\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202500092","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在核磁共振(NMR)中,通常假定样品的体磁化强度与自旋极化成正比,同一类型的每个自旋对测量信号的贡献相等。在这项工作中,我们证明了一般自旋-I系统的高场定理(其中I是自旋量子数):如果系统在高场极限下处于热力学平衡,则总可测量的核磁共振信号不受自旋组为等效单位(例如分子)的影响([[EQUATION]],其中[[EQUATION]]是Larmor频率,[[EQUATION]]表征内部自旋-自旋相互作用)。利用磁化方程和密度矩阵的形式推导了结果。然而,该定理不能扩展到远离热力学平衡的条件(例如,超极化),四极或偶极-偶极相互作用不可忽略的状态下固体的核磁共振,以及零到超低场核磁共振。我们还提出了三个教育问题,旨在加深对课堂环境中材料的理解。这项工作加强了磁共振的既定原则,但也突出了进一步探索的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetization and Polarization of Coupled Nuclear Spins Ensembles at High Magnetic Fields.

In nuclear magnetic resonance (NMR), the bulk magnetization of a sample is commonly assumed to be proportional to spin polarization, with each spin of the same type contributing equally to the measured signal. Herein, the high-field theorem for general spin-I systems (where I is the spin quantum number): the total measurable NMR signal remains unaffected by the grouping of spins into equivalent units (e.g., molecules) is proved, provided the system is at thermodynamic equilibrium in the high field limit ( ω 0 | H spin - spin | $$ \hslash {\omega }_{0}\gg |{H}_{\text{spin}-\text{spin}}|$$ , where ω 0 $\left(\omega\right)_{0}$ is the Larmor frequency and | H spin - spin | $\left|\right. H_{\text{spin} - \text{spin}} \left|\right.$ characterizes internal spin-spin interactions). The results are derived using both magnetization equations and density matrix formalism. The theorem, however, does not extend to conditions far from thermodynamic equilibrium (e.g., hyperpolarization), NMR of solids in the regime when quadrupolar or dipole-dipole interactions are not negligible, and zero- to ultralow-field NMR. Three educational problems designed to deepen understanding of the material in classroom settings are also presented. This work reinforces established principles in magnetic resonance but also highlights areas for further exploration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信