嗅觉外间充质干细胞上清液和鞣花酸对慢性多发性硬化症模型脱髓鞘和神经胶质调节的协同作用。

IF 3.6 4区 医学 Q3 CELL BIOLOGY
Fatemeh Tahmasebi, Elmira Roshani Asl, Faezeh Faghihi, Nadia Bolandi, Shirin Barati
{"title":"嗅觉外间充质干细胞上清液和鞣花酸对慢性多发性硬化症模型脱髓鞘和神经胶质调节的协同作用。","authors":"Fatemeh Tahmasebi, Elmira Roshani Asl, Faezeh Faghihi, Nadia Bolandi, Shirin Barati","doi":"10.1007/s10571-025-01558-w","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. Stem cells as a source of neurotrophic factors and ellagic acid (EA) as an antioxidant reduce the progression of neurodegenerative diseases. In this study, we evaluated the effect of olfactory ecto-mesenchymal stem cell (EMSC) supernatant and EA on A1 astrocytes, M1 microglia, and demyelination in cuprizone model. To induce the chronic demyelination model, mice received a diet containing 0.2% cuprizone/kg of food for 12 weeks. EMSC supernatant was injected into the lateral ventricle of mice. EA was administered intraperitoneally daily at a dose of 80 mg/kg body weight for two weeks. Two weeks after injection, immunohistochemistry was performed to detect the presence of astrocytes (GFAP), microglia/macrophages (Iba-1), and oligodendrocytes (Olig2). The level of gene expression of EMSC (TGF-β and BDNF), astrocytes (C3 and GBP2) and microglia (iNOS, TNF-α and IL-6) was evaluated by qRT-PCR method. The results showed that injection of EMSC and EA increased the expression of TGF-β and BDNF genes as trophic factors. LFB images showed that supernatant and EA significantly improved remyelination, which was accompanied by an increase in oligodendrocyte population. The astrocyte population increased in the cuprizone group, while it decreased after supernatant and EA administration. The supernatant and EA decreased microglia after cuprizone induction. The qRT-PCR showed neurotoxic genes of A1 and M1 decreased after supernatant and EA administration. Here, we demonstrate that EMSC supernatant and EA could improve demyelination in neurodegenerative diseases such as MS by reducing microgliosis and astrocytosis in addition to increasing myelination.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"45 1","pages":"40"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12048376/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synergistic Effects of Olfactory Ecto-Mesenchymal Stem Cell Supernatant and Ellagic Acid on Demyelination and Glial Modulation in a Chronic Multiple Sclerosis Model.\",\"authors\":\"Fatemeh Tahmasebi, Elmira Roshani Asl, Faezeh Faghihi, Nadia Bolandi, Shirin Barati\",\"doi\":\"10.1007/s10571-025-01558-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. Stem cells as a source of neurotrophic factors and ellagic acid (EA) as an antioxidant reduce the progression of neurodegenerative diseases. In this study, we evaluated the effect of olfactory ecto-mesenchymal stem cell (EMSC) supernatant and EA on A1 astrocytes, M1 microglia, and demyelination in cuprizone model. To induce the chronic demyelination model, mice received a diet containing 0.2% cuprizone/kg of food for 12 weeks. EMSC supernatant was injected into the lateral ventricle of mice. EA was administered intraperitoneally daily at a dose of 80 mg/kg body weight for two weeks. Two weeks after injection, immunohistochemistry was performed to detect the presence of astrocytes (GFAP), microglia/macrophages (Iba-1), and oligodendrocytes (Olig2). The level of gene expression of EMSC (TGF-β and BDNF), astrocytes (C3 and GBP2) and microglia (iNOS, TNF-α and IL-6) was evaluated by qRT-PCR method. The results showed that injection of EMSC and EA increased the expression of TGF-β and BDNF genes as trophic factors. LFB images showed that supernatant and EA significantly improved remyelination, which was accompanied by an increase in oligodendrocyte population. The astrocyte population increased in the cuprizone group, while it decreased after supernatant and EA administration. The supernatant and EA decreased microglia after cuprizone induction. The qRT-PCR showed neurotoxic genes of A1 and M1 decreased after supernatant and EA administration. Here, we demonstrate that EMSC supernatant and EA could improve demyelination in neurodegenerative diseases such as MS by reducing microgliosis and astrocytosis in addition to increasing myelination.</p>\",\"PeriodicalId\":9742,\"journal\":{\"name\":\"Cellular and Molecular Neurobiology\",\"volume\":\"45 1\",\"pages\":\"40\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12048376/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular and Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10571-025-01558-w\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10571-025-01558-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

多发性硬化症(MS)是一种中枢神经系统的炎症性脱髓鞘疾病。干细胞作为神经营养因子的来源和鞣花酸(EA)作为抗氧化剂可减少神经退行性疾病的进展。在本研究中,我们评估了嗅觉外充质干细胞(EMSC)上清和EA对铜酮模型A1星形胶质细胞、M1小胶质细胞和脱髓鞘的影响。为了建立慢性脱髓鞘模型,小鼠连续12周给予含0.2%铜酮/kg食物的日粮。将EMSC上清液注入小鼠侧脑室。每日以80 mg/kg体重腹腔注射EA,持续两周。注射后两周,免疫组化检测星形胶质细胞(GFAP)、小胶质细胞/巨噬细胞(Iba-1)和少突胶质细胞(Olig2)的存在。采用qRT-PCR法检测EMSC (TGF-β、BDNF)、星形胶质细胞(C3、GBP2)、小胶质细胞(iNOS、TNF-α、IL-6)基因表达水平。结果表明,注射EMSC和EA均可增加TGF-β和BDNF基因的表达。LFB图像显示,上清液和EA显著改善了髓鞘再生,并伴有少突胶质细胞数量的增加。铜普利酮组星形胶质细胞数量增加,上清和EA组星形胶质细胞数量减少。铜酮诱导后,上清液和EA可使小胶质细胞减少。qRT-PCR结果显示,经上清和EA处理后,A1和M1神经毒性基因减少。在这里,我们证明EMSC上清和EA可以通过减少小胶质细胞增生和星形细胞增生以及增加髓鞘形成来改善神经退行性疾病(如MS)的脱髓鞘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic Effects of Olfactory Ecto-Mesenchymal Stem Cell Supernatant and Ellagic Acid on Demyelination and Glial Modulation in a Chronic Multiple Sclerosis Model.

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. Stem cells as a source of neurotrophic factors and ellagic acid (EA) as an antioxidant reduce the progression of neurodegenerative diseases. In this study, we evaluated the effect of olfactory ecto-mesenchymal stem cell (EMSC) supernatant and EA on A1 astrocytes, M1 microglia, and demyelination in cuprizone model. To induce the chronic demyelination model, mice received a diet containing 0.2% cuprizone/kg of food for 12 weeks. EMSC supernatant was injected into the lateral ventricle of mice. EA was administered intraperitoneally daily at a dose of 80 mg/kg body weight for two weeks. Two weeks after injection, immunohistochemistry was performed to detect the presence of astrocytes (GFAP), microglia/macrophages (Iba-1), and oligodendrocytes (Olig2). The level of gene expression of EMSC (TGF-β and BDNF), astrocytes (C3 and GBP2) and microglia (iNOS, TNF-α and IL-6) was evaluated by qRT-PCR method. The results showed that injection of EMSC and EA increased the expression of TGF-β and BDNF genes as trophic factors. LFB images showed that supernatant and EA significantly improved remyelination, which was accompanied by an increase in oligodendrocyte population. The astrocyte population increased in the cuprizone group, while it decreased after supernatant and EA administration. The supernatant and EA decreased microglia after cuprizone induction. The qRT-PCR showed neurotoxic genes of A1 and M1 decreased after supernatant and EA administration. Here, we demonstrate that EMSC supernatant and EA could improve demyelination in neurodegenerative diseases such as MS by reducing microgliosis and astrocytosis in addition to increasing myelination.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
137
审稿时长
4-8 weeks
期刊介绍: Cellular and Molecular Neurobiology publishes original research concerned with the analysis of neuronal and brain function at the cellular and subcellular levels. The journal offers timely, peer-reviewed articles that describe anatomic, genetic, physiologic, pharmacologic, and biochemical approaches to the study of neuronal function and the analysis of elementary mechanisms. Studies are presented on isolated mammalian tissues and intact animals, with investigations aimed at the molecular mechanisms or neuronal responses at the level of single cells. Cellular and Molecular Neurobiology also presents studies of the effects of neurons on other organ systems, such as analysis of the electrical or biochemical response to neurotransmitters or neurohormones on smooth muscle or gland cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信