{"title":"基于熵的恒河中平原地下水质量评价与多变量分析和Sobol敏感性对非致癌健康风险的影响。","authors":"Amit Kumar, Anshuman Singh","doi":"10.1007/s10653-025-02495-9","DOIUrl":null,"url":null,"abstract":"<p><p>This study assessed the quality and pollution status of the groundwater in an agricultural and densely populated area of Mid-Gangetic Plain Utilizing Principal Component Analysis (PCA), Spearman's correlation analysis, and Entropy water quality index (EWQI) and evaluated the public health hazard resulting due to nitrate and fluoride exposure using USEPA-based Health risk model and Sobol sensitivity analysis (SSA) on the basis of collected groundwater samples. The analysis revealed that several water quality parameters surpassed the permissible levels established by the Bureau of Indian Standards (BIS). Based on the third quartile values the sequence of ionic dominance in the groundwater was observed as: HCO<sub>3</sub><sup>-</sup> > Ca<sup>2+</sup> > Mg<sup>2+</sup> > Cl<sup>-</sup> > SO<sub>4</sub><sup>2-</sup> > NO<sub>3</sub><sup>-</sup> > PO<sub>4</sub><sup>3-</sup> > F<sup>-</sup>. Approximately 10% of groundwater samples exceeded the desirable fluoride level of 1 mg/l, and 12% of samples surpassed the BIS permissible nitrate limit of 45 mg/l. Correlation analysis suggested key factors driving groundwater chemistry, including agricultural runoff, wastewater discharge, and geological activities. PCA reduced 12 variables to 4 significant components, explaining 68.074% of the variation, identifying both geogenic and anthropogenic interventions on the groundwater quality, and highlighting the complex interplay of these factors in the study area. Groundwater quality, measured by EWQI, ranged from 36.30 to 234 revealing about 85% of samples falling in excellent to fair quality, suitable for drinking. Notedly, there was some overlap in the distribution pattern of poor water quality samples and those with high nitrate, phosphate, and magnesium levels. Health risk assessment revealed that nitrate and fluoride pollution pose a significant non-carcinogenic threat. The total hazard index ranging 0.328-2.77 for children, 0.26-2.23 for females, and 0.22-1.89 for males, with 56.10% of samples exceeding the safe threshold for children, signifying a potential health risk for children than adults. SSA revealed that concentration and intake rate are the most influential variables of nitrate and fluoride exposure, which causes health risks to residents. To ensure public health and safety, the study advises residents to rely on treated water from underground sources. Additionally, it stresses the need for ongoing monitoring of groundwater resources to guide the development of effective pollution mitigation strategies and maintain a safe and reliable water supply.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 6","pages":"186"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy-based groundwater quality evaluation with multivariate analysis and Sobol sensitivity for non-carcinogenic health risks in mid-Gangetic plains, India.\",\"authors\":\"Amit Kumar, Anshuman Singh\",\"doi\":\"10.1007/s10653-025-02495-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study assessed the quality and pollution status of the groundwater in an agricultural and densely populated area of Mid-Gangetic Plain Utilizing Principal Component Analysis (PCA), Spearman's correlation analysis, and Entropy water quality index (EWQI) and evaluated the public health hazard resulting due to nitrate and fluoride exposure using USEPA-based Health risk model and Sobol sensitivity analysis (SSA) on the basis of collected groundwater samples. The analysis revealed that several water quality parameters surpassed the permissible levels established by the Bureau of Indian Standards (BIS). Based on the third quartile values the sequence of ionic dominance in the groundwater was observed as: HCO<sub>3</sub><sup>-</sup> > Ca<sup>2+</sup> > Mg<sup>2+</sup> > Cl<sup>-</sup> > SO<sub>4</sub><sup>2-</sup> > NO<sub>3</sub><sup>-</sup> > PO<sub>4</sub><sup>3-</sup> > F<sup>-</sup>. Approximately 10% of groundwater samples exceeded the desirable fluoride level of 1 mg/l, and 12% of samples surpassed the BIS permissible nitrate limit of 45 mg/l. Correlation analysis suggested key factors driving groundwater chemistry, including agricultural runoff, wastewater discharge, and geological activities. PCA reduced 12 variables to 4 significant components, explaining 68.074% of the variation, identifying both geogenic and anthropogenic interventions on the groundwater quality, and highlighting the complex interplay of these factors in the study area. Groundwater quality, measured by EWQI, ranged from 36.30 to 234 revealing about 85% of samples falling in excellent to fair quality, suitable for drinking. Notedly, there was some overlap in the distribution pattern of poor water quality samples and those with high nitrate, phosphate, and magnesium levels. Health risk assessment revealed that nitrate and fluoride pollution pose a significant non-carcinogenic threat. The total hazard index ranging 0.328-2.77 for children, 0.26-2.23 for females, and 0.22-1.89 for males, with 56.10% of samples exceeding the safe threshold for children, signifying a potential health risk for children than adults. SSA revealed that concentration and intake rate are the most influential variables of nitrate and fluoride exposure, which causes health risks to residents. To ensure public health and safety, the study advises residents to rely on treated water from underground sources. Additionally, it stresses the need for ongoing monitoring of groundwater resources to guide the development of effective pollution mitigation strategies and maintain a safe and reliable water supply.</p>\",\"PeriodicalId\":11759,\"journal\":{\"name\":\"Environmental Geochemistry and Health\",\"volume\":\"47 6\",\"pages\":\"186\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Geochemistry and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10653-025-02495-9\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-025-02495-9","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Entropy-based groundwater quality evaluation with multivariate analysis and Sobol sensitivity for non-carcinogenic health risks in mid-Gangetic plains, India.
This study assessed the quality and pollution status of the groundwater in an agricultural and densely populated area of Mid-Gangetic Plain Utilizing Principal Component Analysis (PCA), Spearman's correlation analysis, and Entropy water quality index (EWQI) and evaluated the public health hazard resulting due to nitrate and fluoride exposure using USEPA-based Health risk model and Sobol sensitivity analysis (SSA) on the basis of collected groundwater samples. The analysis revealed that several water quality parameters surpassed the permissible levels established by the Bureau of Indian Standards (BIS). Based on the third quartile values the sequence of ionic dominance in the groundwater was observed as: HCO3- > Ca2+ > Mg2+ > Cl- > SO42- > NO3- > PO43- > F-. Approximately 10% of groundwater samples exceeded the desirable fluoride level of 1 mg/l, and 12% of samples surpassed the BIS permissible nitrate limit of 45 mg/l. Correlation analysis suggested key factors driving groundwater chemistry, including agricultural runoff, wastewater discharge, and geological activities. PCA reduced 12 variables to 4 significant components, explaining 68.074% of the variation, identifying both geogenic and anthropogenic interventions on the groundwater quality, and highlighting the complex interplay of these factors in the study area. Groundwater quality, measured by EWQI, ranged from 36.30 to 234 revealing about 85% of samples falling in excellent to fair quality, suitable for drinking. Notedly, there was some overlap in the distribution pattern of poor water quality samples and those with high nitrate, phosphate, and magnesium levels. Health risk assessment revealed that nitrate and fluoride pollution pose a significant non-carcinogenic threat. The total hazard index ranging 0.328-2.77 for children, 0.26-2.23 for females, and 0.22-1.89 for males, with 56.10% of samples exceeding the safe threshold for children, signifying a potential health risk for children than adults. SSA revealed that concentration and intake rate are the most influential variables of nitrate and fluoride exposure, which causes health risks to residents. To ensure public health and safety, the study advises residents to rely on treated water from underground sources. Additionally, it stresses the need for ongoing monitoring of groundwater resources to guide the development of effective pollution mitigation strategies and maintain a safe and reliable water supply.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.