半月板损伤对创伤后骨关节炎的生物学影响。

IF 2.8 4区 医学 Q3 CELL BIOLOGY
Nathan H Varady, Scott A Rodeo
{"title":"半月板损伤对创伤后骨关节炎的生物学影响。","authors":"Nathan H Varady, Scott A Rodeo","doi":"10.1080/03008207.2025.2487916","DOIUrl":null,"url":null,"abstract":"<p><p>Post-traumatic osteoarthritis (PTOA) is a common and debilitating problem following meniscal injury, which may lead to pain, loss of function, and early joint failure. Over the past 25 years, clinical, laboratory, and translational studies have greatly improved our understanding of PTOA pathogenesis and prevention. Clinical studies have established the benefit of meniscal preservation in preventing PTOA, leading to a significant increase in meniscus repair. Similarly, improved understanding of the biomechanical importance of the meniscal root attachment has increased focus on the detection and treatment of meniscal root injuries. Laboratory studies have demonstrated a preliminary mechanistic pathway of PTOA development following meniscal injury, whereby injury and altered joint loading stimulate a pro-inflammatory response that leads to both articular cartilage breakdown and impaired meniscal healing. In vitro evidence suggests that mechanical loading of the meniscus may ameliorate this catabolic response, with implications for treatment and rehabilitation protocols. Numerous animal models have emerged, allowing for in vivo assessment of PTOA initiation and offering a platform to test potential therapeutic targets. Despite these advances, meniscal repair remains imperfect and is not always possible, and investigations translating laboratory findings to the human setting have been limited. Future directions include further characterizing the immune and cellular responses to meniscal injury, investigating therapies to target the pro-inflammatory cascade and enhance meniscal healing, and developing new models to better distinguish PTOA pathogenesis in human subjects. Continued laboratory, translational, and clinical research efforts are required to identify treatment strategies to reduce the burden of PTOA after meniscal injury.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"1-6"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biological impact of meniscus injury on post-traumatic osteoarthritis.\",\"authors\":\"Nathan H Varady, Scott A Rodeo\",\"doi\":\"10.1080/03008207.2025.2487916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Post-traumatic osteoarthritis (PTOA) is a common and debilitating problem following meniscal injury, which may lead to pain, loss of function, and early joint failure. Over the past 25 years, clinical, laboratory, and translational studies have greatly improved our understanding of PTOA pathogenesis and prevention. Clinical studies have established the benefit of meniscal preservation in preventing PTOA, leading to a significant increase in meniscus repair. Similarly, improved understanding of the biomechanical importance of the meniscal root attachment has increased focus on the detection and treatment of meniscal root injuries. Laboratory studies have demonstrated a preliminary mechanistic pathway of PTOA development following meniscal injury, whereby injury and altered joint loading stimulate a pro-inflammatory response that leads to both articular cartilage breakdown and impaired meniscal healing. In vitro evidence suggests that mechanical loading of the meniscus may ameliorate this catabolic response, with implications for treatment and rehabilitation protocols. Numerous animal models have emerged, allowing for in vivo assessment of PTOA initiation and offering a platform to test potential therapeutic targets. Despite these advances, meniscal repair remains imperfect and is not always possible, and investigations translating laboratory findings to the human setting have been limited. Future directions include further characterizing the immune and cellular responses to meniscal injury, investigating therapies to target the pro-inflammatory cascade and enhance meniscal healing, and developing new models to better distinguish PTOA pathogenesis in human subjects. Continued laboratory, translational, and clinical research efforts are required to identify treatment strategies to reduce the burden of PTOA after meniscal injury.</p>\",\"PeriodicalId\":10661,\"journal\":{\"name\":\"Connective Tissue Research\",\"volume\":\" \",\"pages\":\"1-6\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Connective Tissue Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/03008207.2025.2487916\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connective Tissue Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03008207.2025.2487916","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

创伤后骨关节炎(PTOA)是半月板损伤后常见的使人衰弱的问题,它可能导致疼痛、功能丧失和早期关节衰竭。在过去的25年里,临床、实验室和转化研究极大地提高了我们对上睑下垂发病机制和预防的认识。临床研究已经证实半月板保存在预防上睑下垂方面的益处,导致半月板修复的显著增加。同样,对半月板根附着体的生物力学重要性的理解的提高,增加了半月板根损伤的检测和治疗的关注。实验室研究已经证实了半月板损伤后PTOA发展的初步机制途径,即损伤和改变的关节负荷刺激促炎反应,导致关节软骨破裂和半月板愈合受损。体外证据表明,半月板的机械负荷可能会改善这种分解代谢反应,这对治疗和康复方案具有重要意义。许多动物模型已经出现,允许在体内评估toa的启动,并提供了一个平台来测试潜在的治疗靶点。尽管取得了这些进展,半月板修复仍然不完善,并不总是可能的,并且将实验室发现转化为人类环境的调查也很有限。未来的方向包括进一步表征半月板损伤的免疫和细胞反应,研究针对促炎级联反应和增强半月板愈合的治疗方法,以及开发新的模型来更好地区分人类受试者的PTOA发病机制。需要持续的实验室、转化和临床研究来确定治疗策略,以减轻半月板损伤后睑下垂的负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biological impact of meniscus injury on post-traumatic osteoarthritis.

Post-traumatic osteoarthritis (PTOA) is a common and debilitating problem following meniscal injury, which may lead to pain, loss of function, and early joint failure. Over the past 25 years, clinical, laboratory, and translational studies have greatly improved our understanding of PTOA pathogenesis and prevention. Clinical studies have established the benefit of meniscal preservation in preventing PTOA, leading to a significant increase in meniscus repair. Similarly, improved understanding of the biomechanical importance of the meniscal root attachment has increased focus on the detection and treatment of meniscal root injuries. Laboratory studies have demonstrated a preliminary mechanistic pathway of PTOA development following meniscal injury, whereby injury and altered joint loading stimulate a pro-inflammatory response that leads to both articular cartilage breakdown and impaired meniscal healing. In vitro evidence suggests that mechanical loading of the meniscus may ameliorate this catabolic response, with implications for treatment and rehabilitation protocols. Numerous animal models have emerged, allowing for in vivo assessment of PTOA initiation and offering a platform to test potential therapeutic targets. Despite these advances, meniscal repair remains imperfect and is not always possible, and investigations translating laboratory findings to the human setting have been limited. Future directions include further characterizing the immune and cellular responses to meniscal injury, investigating therapies to target the pro-inflammatory cascade and enhance meniscal healing, and developing new models to better distinguish PTOA pathogenesis in human subjects. Continued laboratory, translational, and clinical research efforts are required to identify treatment strategies to reduce the burden of PTOA after meniscal injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Connective Tissue Research
Connective Tissue Research 生物-细胞生物学
CiteScore
6.60
自引率
3.40%
发文量
37
审稿时长
2 months
期刊介绍: The aim of Connective Tissue Research is to present original and significant research in all basic areas of connective tissue and matrix biology. The journal also provides topical reviews and, on occasion, the proceedings of conferences in areas of special interest at which original work is presented. The journal supports an interdisciplinary approach; we present a variety of perspectives from different disciplines, including Biochemistry Cell and Molecular Biology Immunology Structural Biology Biophysics Biomechanics Regenerative Medicine The interests of the Editorial Board are to understand, mechanistically, the structure-function relationships in connective tissue extracellular matrix, and its associated cells, through interpretation of sophisticated experimentation using state-of-the-art technologies that include molecular genetics, imaging, immunology, biomechanics and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信