Quan Zhou, Mingwei Wen, Mingyue Ding, Yixin Su, Zhiwei Wang
{"title":"基于相关信息增强和混合伪掩码生成的单片半监督三维医学图像分割。","authors":"Quan Zhou, Mingwei Wen, Mingyue Ding, Yixin Su, Zhiwei Wang","doi":"10.1109/JBHI.2025.3559091","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional (3D) medical image segmentation typically demands extensive labeled training samples, which is prohibitively time-consuming and requires significant expertise. Although this demand can be mitigated by special learning paradigms such as semi-supervised learning, the cost is still high due to the reader-unfriendly 3D data structure. In this paper, we seek a solution of robust 3D segmentation using extremely simplified annotation that delineates only a single slice per each volume for only a subset of the 3D samples. To this end, we propose two innovative modules: a correlation-enhanced 3D segmentation model (CE-Seg) and a hybrid 3D pseudo mask generator (Hy-Gen). CE-Seg aims to comprehensively understand the 3D targets under super-sparse single-slice supervision by maximizing its ability to mine correlations across slices, spaces and scales. Specifically, CE-Seg mimics the radiologist's interpretation by 'seeing' a dynamically scrolling 3D image to enrich the slice-correlated context. It also introduces a drop-then-restoration self-played task to enhance the spatial correlations of features, and uses a bidirectional cascaded attention to interactively fuse features across different scales. To train CS-Seg, Hy-Gen combines learning-based and learning-free strategies to generate reliable pseudo 3D masks as supervisions. Concretely, Hy-Gen first employs a level-set evolution to 'spread' the single annotation to its neighboring slices as initialization. It then builds a teacher-student framework to progressively refine the initialized 3D mask by dynamically merging the predictions of the CS-Seg's teacher-copy. Extensive experiments on three public and one in-house datasets indicate that our method exceeds eight state-of-the-art semi-supervised methods by at least 3% in dice, and is even on par with the full-supervised counterpart.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-slice Semi-supervised 3D Medical Image Segmentation via Correlation Information Enhancement and Hybrid Pseudo Mask Generation.\",\"authors\":\"Quan Zhou, Mingwei Wen, Mingyue Ding, Yixin Su, Zhiwei Wang\",\"doi\":\"10.1109/JBHI.2025.3559091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Three-dimensional (3D) medical image segmentation typically demands extensive labeled training samples, which is prohibitively time-consuming and requires significant expertise. Although this demand can be mitigated by special learning paradigms such as semi-supervised learning, the cost is still high due to the reader-unfriendly 3D data structure. In this paper, we seek a solution of robust 3D segmentation using extremely simplified annotation that delineates only a single slice per each volume for only a subset of the 3D samples. To this end, we propose two innovative modules: a correlation-enhanced 3D segmentation model (CE-Seg) and a hybrid 3D pseudo mask generator (Hy-Gen). CE-Seg aims to comprehensively understand the 3D targets under super-sparse single-slice supervision by maximizing its ability to mine correlations across slices, spaces and scales. Specifically, CE-Seg mimics the radiologist's interpretation by 'seeing' a dynamically scrolling 3D image to enrich the slice-correlated context. It also introduces a drop-then-restoration self-played task to enhance the spatial correlations of features, and uses a bidirectional cascaded attention to interactively fuse features across different scales. To train CS-Seg, Hy-Gen combines learning-based and learning-free strategies to generate reliable pseudo 3D masks as supervisions. Concretely, Hy-Gen first employs a level-set evolution to 'spread' the single annotation to its neighboring slices as initialization. It then builds a teacher-student framework to progressively refine the initialized 3D mask by dynamically merging the predictions of the CS-Seg's teacher-copy. Extensive experiments on three public and one in-house datasets indicate that our method exceeds eight state-of-the-art semi-supervised methods by at least 3% in dice, and is even on par with the full-supervised counterpart.</p>\",\"PeriodicalId\":13073,\"journal\":{\"name\":\"IEEE Journal of Biomedical and Health Informatics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Biomedical and Health Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/JBHI.2025.3559091\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3559091","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Single-slice Semi-supervised 3D Medical Image Segmentation via Correlation Information Enhancement and Hybrid Pseudo Mask Generation.
Three-dimensional (3D) medical image segmentation typically demands extensive labeled training samples, which is prohibitively time-consuming and requires significant expertise. Although this demand can be mitigated by special learning paradigms such as semi-supervised learning, the cost is still high due to the reader-unfriendly 3D data structure. In this paper, we seek a solution of robust 3D segmentation using extremely simplified annotation that delineates only a single slice per each volume for only a subset of the 3D samples. To this end, we propose two innovative modules: a correlation-enhanced 3D segmentation model (CE-Seg) and a hybrid 3D pseudo mask generator (Hy-Gen). CE-Seg aims to comprehensively understand the 3D targets under super-sparse single-slice supervision by maximizing its ability to mine correlations across slices, spaces and scales. Specifically, CE-Seg mimics the radiologist's interpretation by 'seeing' a dynamically scrolling 3D image to enrich the slice-correlated context. It also introduces a drop-then-restoration self-played task to enhance the spatial correlations of features, and uses a bidirectional cascaded attention to interactively fuse features across different scales. To train CS-Seg, Hy-Gen combines learning-based and learning-free strategies to generate reliable pseudo 3D masks as supervisions. Concretely, Hy-Gen first employs a level-set evolution to 'spread' the single annotation to its neighboring slices as initialization. It then builds a teacher-student framework to progressively refine the initialized 3D mask by dynamically merging the predictions of the CS-Seg's teacher-copy. Extensive experiments on three public and one in-house datasets indicate that our method exceeds eight state-of-the-art semi-supervised methods by at least 3% in dice, and is even on par with the full-supervised counterpart.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.