基于相关信息增强和混合伪掩码生成的单片半监督三维医学图像分割。

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Quan Zhou, Mingwei Wen, Mingyue Ding, Yixin Su, Zhiwei Wang
{"title":"基于相关信息增强和混合伪掩码生成的单片半监督三维医学图像分割。","authors":"Quan Zhou, Mingwei Wen, Mingyue Ding, Yixin Su, Zhiwei Wang","doi":"10.1109/JBHI.2025.3559091","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional (3D) medical image segmentation typically demands extensive labeled training samples, which is prohibitively time-consuming and requires significant expertise. Although this demand can be mitigated by special learning paradigms such as semi-supervised learning, the cost is still high due to the reader-unfriendly 3D data structure. In this paper, we seek a solution of robust 3D segmentation using extremely simplified annotation that delineates only a single slice per each volume for only a subset of the 3D samples. To this end, we propose two innovative modules: a correlation-enhanced 3D segmentation model (CE-Seg) and a hybrid 3D pseudo mask generator (Hy-Gen). CE-Seg aims to comprehensively understand the 3D targets under super-sparse single-slice supervision by maximizing its ability to mine correlations across slices, spaces and scales. Specifically, CE-Seg mimics the radiologist's interpretation by 'seeing' a dynamically scrolling 3D image to enrich the slice-correlated context. It also introduces a drop-then-restoration self-played task to enhance the spatial correlations of features, and uses a bidirectional cascaded attention to interactively fuse features across different scales. To train CS-Seg, Hy-Gen combines learning-based and learning-free strategies to generate reliable pseudo 3D masks as supervisions. Concretely, Hy-Gen first employs a level-set evolution to 'spread' the single annotation to its neighboring slices as initialization. It then builds a teacher-student framework to progressively refine the initialized 3D mask by dynamically merging the predictions of the CS-Seg's teacher-copy. Extensive experiments on three public and one in-house datasets indicate that our method exceeds eight state-of-the-art semi-supervised methods by at least 3% in dice, and is even on par with the full-supervised counterpart.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-slice Semi-supervised 3D Medical Image Segmentation via Correlation Information Enhancement and Hybrid Pseudo Mask Generation.\",\"authors\":\"Quan Zhou, Mingwei Wen, Mingyue Ding, Yixin Su, Zhiwei Wang\",\"doi\":\"10.1109/JBHI.2025.3559091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Three-dimensional (3D) medical image segmentation typically demands extensive labeled training samples, which is prohibitively time-consuming and requires significant expertise. Although this demand can be mitigated by special learning paradigms such as semi-supervised learning, the cost is still high due to the reader-unfriendly 3D data structure. In this paper, we seek a solution of robust 3D segmentation using extremely simplified annotation that delineates only a single slice per each volume for only a subset of the 3D samples. To this end, we propose two innovative modules: a correlation-enhanced 3D segmentation model (CE-Seg) and a hybrid 3D pseudo mask generator (Hy-Gen). CE-Seg aims to comprehensively understand the 3D targets under super-sparse single-slice supervision by maximizing its ability to mine correlations across slices, spaces and scales. Specifically, CE-Seg mimics the radiologist's interpretation by 'seeing' a dynamically scrolling 3D image to enrich the slice-correlated context. It also introduces a drop-then-restoration self-played task to enhance the spatial correlations of features, and uses a bidirectional cascaded attention to interactively fuse features across different scales. To train CS-Seg, Hy-Gen combines learning-based and learning-free strategies to generate reliable pseudo 3D masks as supervisions. Concretely, Hy-Gen first employs a level-set evolution to 'spread' the single annotation to its neighboring slices as initialization. It then builds a teacher-student framework to progressively refine the initialized 3D mask by dynamically merging the predictions of the CS-Seg's teacher-copy. Extensive experiments on three public and one in-house datasets indicate that our method exceeds eight state-of-the-art semi-supervised methods by at least 3% in dice, and is even on par with the full-supervised counterpart.</p>\",\"PeriodicalId\":13073,\"journal\":{\"name\":\"IEEE Journal of Biomedical and Health Informatics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Biomedical and Health Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/JBHI.2025.3559091\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3559091","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

三维(3D)医学图像分割通常需要大量标记的训练样本,这是非常耗时的,需要大量的专业知识。虽然这种需求可以通过半监督学习等特殊的学习范式来缓解,但由于3D数据结构对读者不友好,成本仍然很高。在本文中,我们寻求一种鲁棒3D分割的解决方案,使用极其简化的注释,仅为3D样本的一个子集描绘每个体积的单个切片。为此,我们提出了两个创新模块:相关性增强的3D分割模型(CE-Seg)和混合3D伪掩码生成器(Hy-Gen)。CE-Seg旨在通过最大限度地挖掘切片、空间和尺度之间的相关性,全面了解超稀疏单片监督下的3D目标。具体来说,CE-Seg通过“看到”动态滚动的3D图像来模拟放射科医生的解释,以丰富切片相关的背景。它还引入了一个drop-然后恢复的自播放任务来增强特征的空间相关性,并使用双向级联注意来交互融合不同尺度的特征。为了训练CS-Seg, Hy-Gen结合了基于学习和无学习的策略来生成可靠的伪3D掩模作为监督。具体来说,Hy-Gen首先使用一个水平集进化将单个注释“传播”到相邻的切片作为初始化。然后,它建立了一个师生框架,通过动态合并CS-Seg的教师拷贝的预测,逐步完善初始化的3D掩模。在三个公共数据集和一个内部数据集上进行的广泛实验表明,我们的方法比八种最先进的半监督方法至少高出3%,甚至与完全监督的方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single-slice Semi-supervised 3D Medical Image Segmentation via Correlation Information Enhancement and Hybrid Pseudo Mask Generation.

Three-dimensional (3D) medical image segmentation typically demands extensive labeled training samples, which is prohibitively time-consuming and requires significant expertise. Although this demand can be mitigated by special learning paradigms such as semi-supervised learning, the cost is still high due to the reader-unfriendly 3D data structure. In this paper, we seek a solution of robust 3D segmentation using extremely simplified annotation that delineates only a single slice per each volume for only a subset of the 3D samples. To this end, we propose two innovative modules: a correlation-enhanced 3D segmentation model (CE-Seg) and a hybrid 3D pseudo mask generator (Hy-Gen). CE-Seg aims to comprehensively understand the 3D targets under super-sparse single-slice supervision by maximizing its ability to mine correlations across slices, spaces and scales. Specifically, CE-Seg mimics the radiologist's interpretation by 'seeing' a dynamically scrolling 3D image to enrich the slice-correlated context. It also introduces a drop-then-restoration self-played task to enhance the spatial correlations of features, and uses a bidirectional cascaded attention to interactively fuse features across different scales. To train CS-Seg, Hy-Gen combines learning-based and learning-free strategies to generate reliable pseudo 3D masks as supervisions. Concretely, Hy-Gen first employs a level-set evolution to 'spread' the single annotation to its neighboring slices as initialization. It then builds a teacher-student framework to progressively refine the initialized 3D mask by dynamically merging the predictions of the CS-Seg's teacher-copy. Extensive experiments on three public and one in-house datasets indicate that our method exceeds eight state-of-the-art semi-supervised methods by at least 3% in dice, and is even on par with the full-supervised counterpart.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信