抗肿瘤CD4+ T辅助1细胞靶向并控制播散性癌细胞的生长。

IF 8.1 1区 医学 Q1 IMMUNOLOGY
Ganesan Ramamoorthi, Marie Catherine Lee, Carly M Farrell, Colin Snyder, Saurabh K Garg, Amy L Aldrich, Vincent Lok, William Dominguez-Viqueira, Sy K Olson-Mcpeek, Marilin Rosa, Namrata Gautam, Shari Pilon-Thomas, Ling Cen, Krithika N Kodumudi, Doris Wiener, Thordur Oskarsson, Ana P Gomes, Robert A Gatenby, Brian J Czerniecki
{"title":"抗肿瘤CD4+ T辅助1细胞靶向并控制播散性癌细胞的生长。","authors":"Ganesan Ramamoorthi, Marie Catherine Lee, Carly M Farrell, Colin Snyder, Saurabh K Garg, Amy L Aldrich, Vincent Lok, William Dominguez-Viqueira, Sy K Olson-Mcpeek, Marilin Rosa, Namrata Gautam, Shari Pilon-Thomas, Ling Cen, Krithika N Kodumudi, Doris Wiener, Thordur Oskarsson, Ana P Gomes, Robert A Gatenby, Brian J Czerniecki","doi":"10.1158/2326-6066.CIR-24-0630","DOIUrl":null,"url":null,"abstract":"<p><p>Detection of disseminated cancer cells (DCC) in the bone marrow (BM) of patients with breast cancer is a critical predictor of late recurrence and distant metastasis. Conventional therapies often fail to completely eradicate DCCs in patients. In this study, we demonstrate that intratumoral priming of antitumor CD4+ T helper 1 (Th1) cells was able to eliminate the DCC burden in distant organs and prevent overt metastasis, independent of CD8+ T cells. Intratumoral priming of tumor antigen-specific CD4+ Th1 cells enhanced their migration to the BM and distant metastatic site to selectively target DCC burden. The majority of these intratumorally activated CD4+ T cells were CD4+PD1- T cells, supporting their nonexhaustion stage. Phenotypic characterization revealed enhanced infiltration of memory CD4+ T cells and effector CD4+ T cells in the primary tumor, tumor-draining lymph node, and DCC-driven metastasis site. A robust migration of CD4+CCR7+CXCR3+ Th1 cells and CD4+CCR7-CXCR3+ Th1 cells into distant organs further revealed their potential role in eradicating DCC-driven metastasis. The intratumoral priming of antitumor CD4+ Th1 cells failed to eradicate DCC-driven metastasis in CD4- or IFN-γ knockout mice. Moreover, antitumor CD4+ Th1 cells, by increasing IFN-γ production, inhibited various molecular aspects and increased classical and nonclassical MHC molecule expression in DCCs. This reduced stemness and self-renewal while increasing immune recognition in DCCs of patients with breast cancer. These results unveil an immune basis for antitumor CD4+ Th1 cells that modulate DCC tumorigenesis to prevent recurrence and metastasis in patients.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":"13 5","pages":"729-748"},"PeriodicalIF":8.1000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12046335/pdf/","citationCount":"0","resultStr":"{\"title\":\"Antitumor CD4+ T Helper 1 Cells Target and Control the Outgrowth of Disseminated Cancer Cells.\",\"authors\":\"Ganesan Ramamoorthi, Marie Catherine Lee, Carly M Farrell, Colin Snyder, Saurabh K Garg, Amy L Aldrich, Vincent Lok, William Dominguez-Viqueira, Sy K Olson-Mcpeek, Marilin Rosa, Namrata Gautam, Shari Pilon-Thomas, Ling Cen, Krithika N Kodumudi, Doris Wiener, Thordur Oskarsson, Ana P Gomes, Robert A Gatenby, Brian J Czerniecki\",\"doi\":\"10.1158/2326-6066.CIR-24-0630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Detection of disseminated cancer cells (DCC) in the bone marrow (BM) of patients with breast cancer is a critical predictor of late recurrence and distant metastasis. Conventional therapies often fail to completely eradicate DCCs in patients. In this study, we demonstrate that intratumoral priming of antitumor CD4+ T helper 1 (Th1) cells was able to eliminate the DCC burden in distant organs and prevent overt metastasis, independent of CD8+ T cells. Intratumoral priming of tumor antigen-specific CD4+ Th1 cells enhanced their migration to the BM and distant metastatic site to selectively target DCC burden. The majority of these intratumorally activated CD4+ T cells were CD4+PD1- T cells, supporting their nonexhaustion stage. Phenotypic characterization revealed enhanced infiltration of memory CD4+ T cells and effector CD4+ T cells in the primary tumor, tumor-draining lymph node, and DCC-driven metastasis site. A robust migration of CD4+CCR7+CXCR3+ Th1 cells and CD4+CCR7-CXCR3+ Th1 cells into distant organs further revealed their potential role in eradicating DCC-driven metastasis. The intratumoral priming of antitumor CD4+ Th1 cells failed to eradicate DCC-driven metastasis in CD4- or IFN-γ knockout mice. Moreover, antitumor CD4+ Th1 cells, by increasing IFN-γ production, inhibited various molecular aspects and increased classical and nonclassical MHC molecule expression in DCCs. This reduced stemness and self-renewal while increasing immune recognition in DCCs of patients with breast cancer. These results unveil an immune basis for antitumor CD4+ Th1 cells that modulate DCC tumorigenesis to prevent recurrence and metastasis in patients.</p>\",\"PeriodicalId\":9474,\"journal\":{\"name\":\"Cancer immunology research\",\"volume\":\"13 5\",\"pages\":\"729-748\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12046335/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer immunology research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/2326-6066.CIR-24-0630\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-24-0630","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

乳腺癌患者骨髓(BM)中弥散性癌细胞(DCC)的检测是乳腺癌晚期复发和远处转移的重要预测指标。常规疗法往往不能完全根除患者的胆管癌。在这项研究中,我们证明了肿瘤内启动抗肿瘤CD4+ T辅助1 (Th1)细胞能够消除远处器官的DCC负担并防止显性转移,而不依赖于CD8+ T细胞。肿瘤内启动肿瘤抗原特异性CD4+ Th1细胞可增强其向基底细胞和远处转移部位的迁移,从而选择性靶向DCC负荷。这些瘤内活化的CD4+ T细胞大多数是CD4+PD1- T细胞,支持它们的非衰竭阶段。表型特征显示记忆性CD4+ T细胞和效应性CD4+ T细胞在原发肿瘤、肿瘤引流淋巴结和dcc驱动转移部位的浸润增强。CD4+CCR7+CXCR3+ Th1细胞和CD4+CCR7-CXCR3+ Th1细胞向远处器官的强大迁移进一步揭示了它们在根除dcc驱动转移中的潜在作用。在CD4-或IFN-γ敲除小鼠中,瘤内启动抗肿瘤CD4+ Th1细胞不能根除dcc驱动的转移。此外,抗肿瘤CD4+ Th1细胞通过增加IFN-γ的产生,抑制了dcc中各种分子方面的表达,增加了经典和非经典MHC分子的表达。这减少了干细胞和自我更新,同时增加了乳腺癌患者dcc的免疫识别。这些结果揭示了抗肿瘤CD4+ Th1细胞调节DCC肿瘤发生以防止患者复发和转移的免疫基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Antitumor CD4+ T Helper 1 Cells Target and Control the Outgrowth of Disseminated Cancer Cells.

Detection of disseminated cancer cells (DCC) in the bone marrow (BM) of patients with breast cancer is a critical predictor of late recurrence and distant metastasis. Conventional therapies often fail to completely eradicate DCCs in patients. In this study, we demonstrate that intratumoral priming of antitumor CD4+ T helper 1 (Th1) cells was able to eliminate the DCC burden in distant organs and prevent overt metastasis, independent of CD8+ T cells. Intratumoral priming of tumor antigen-specific CD4+ Th1 cells enhanced their migration to the BM and distant metastatic site to selectively target DCC burden. The majority of these intratumorally activated CD4+ T cells were CD4+PD1- T cells, supporting their nonexhaustion stage. Phenotypic characterization revealed enhanced infiltration of memory CD4+ T cells and effector CD4+ T cells in the primary tumor, tumor-draining lymph node, and DCC-driven metastasis site. A robust migration of CD4+CCR7+CXCR3+ Th1 cells and CD4+CCR7-CXCR3+ Th1 cells into distant organs further revealed their potential role in eradicating DCC-driven metastasis. The intratumoral priming of antitumor CD4+ Th1 cells failed to eradicate DCC-driven metastasis in CD4- or IFN-γ knockout mice. Moreover, antitumor CD4+ Th1 cells, by increasing IFN-γ production, inhibited various molecular aspects and increased classical and nonclassical MHC molecule expression in DCCs. This reduced stemness and self-renewal while increasing immune recognition in DCCs of patients with breast cancer. These results unveil an immune basis for antitumor CD4+ Th1 cells that modulate DCC tumorigenesis to prevent recurrence and metastasis in patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer immunology research
Cancer immunology research ONCOLOGY-IMMUNOLOGY
CiteScore
15.60
自引率
1.00%
发文量
260
期刊介绍: Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes. Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信