Michael M Halassa, Michael J Frank, Philippa Garety, Dost Ongur, Raag D Airan, Gerard Sanacora, Kafui Dzirasa, Sahil Suresh, Susan M Fitzpatrick, Douglas L Rothman
{"title":"通过多层次跨越计算模型发展算法精神病学。","authors":"Michael M Halassa, Michael J Frank, Philippa Garety, Dost Ongur, Raag D Airan, Gerard Sanacora, Kafui Dzirasa, Sahil Suresh, Susan M Fitzpatrick, Douglas L Rothman","doi":"10.1016/j.xcrm.2025.102094","DOIUrl":null,"url":null,"abstract":"<p><p>Modern psychiatry faces challenges in translating neurobiological insights into treatments for severe illnesses. The mid-20th century witnessed the rise of molecular mechanisms as pathophysiological and treatment models, with recent holistic proposals keeping this focus unaltered. In this perspective, we explore how psychiatry can utilize systems neuroscience to develop a vertically integrated understanding of brain function to inform treatment. Using schizophrenia as a case study, we discuss scale-related challenges faced by researchers studying molecules, circuits, networks, and cognition and clinicians operating within existing frameworks. We emphasize computation as a bridging language, with algorithmic models like hierarchical predictive processing offering explanatory potential for targeted interventions. Developing such models will not only facilitate new interventions but also optimize combining existing treatments by predicting their multi-level effects. We conclude with the prognosis that the future is bright, but that continued investment in research closely driven by clinical realities will be critical.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"102094"},"PeriodicalIF":11.7000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12147853/pdf/","citationCount":"0","resultStr":"{\"title\":\"Developing algorithmic psychiatry via multi-level spanning computational models.\",\"authors\":\"Michael M Halassa, Michael J Frank, Philippa Garety, Dost Ongur, Raag D Airan, Gerard Sanacora, Kafui Dzirasa, Sahil Suresh, Susan M Fitzpatrick, Douglas L Rothman\",\"doi\":\"10.1016/j.xcrm.2025.102094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Modern psychiatry faces challenges in translating neurobiological insights into treatments for severe illnesses. The mid-20th century witnessed the rise of molecular mechanisms as pathophysiological and treatment models, with recent holistic proposals keeping this focus unaltered. In this perspective, we explore how psychiatry can utilize systems neuroscience to develop a vertically integrated understanding of brain function to inform treatment. Using schizophrenia as a case study, we discuss scale-related challenges faced by researchers studying molecules, circuits, networks, and cognition and clinicians operating within existing frameworks. We emphasize computation as a bridging language, with algorithmic models like hierarchical predictive processing offering explanatory potential for targeted interventions. Developing such models will not only facilitate new interventions but also optimize combining existing treatments by predicting their multi-level effects. We conclude with the prognosis that the future is bright, but that continued investment in research closely driven by clinical realities will be critical.</p>\",\"PeriodicalId\":9822,\"journal\":{\"name\":\"Cell Reports Medicine\",\"volume\":\" \",\"pages\":\"102094\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12147853/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrm.2025.102094\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.102094","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Developing algorithmic psychiatry via multi-level spanning computational models.
Modern psychiatry faces challenges in translating neurobiological insights into treatments for severe illnesses. The mid-20th century witnessed the rise of molecular mechanisms as pathophysiological and treatment models, with recent holistic proposals keeping this focus unaltered. In this perspective, we explore how psychiatry can utilize systems neuroscience to develop a vertically integrated understanding of brain function to inform treatment. Using schizophrenia as a case study, we discuss scale-related challenges faced by researchers studying molecules, circuits, networks, and cognition and clinicians operating within existing frameworks. We emphasize computation as a bridging language, with algorithmic models like hierarchical predictive processing offering explanatory potential for targeted interventions. Developing such models will not only facilitate new interventions but also optimize combining existing treatments by predicting their multi-level effects. We conclude with the prognosis that the future is bright, but that continued investment in research closely driven by clinical realities will be critical.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.