利用双通道图和超图卷积网络发现微生物潜在的疾病特征。

IF 5.3 2区 化学 Q1 CHEMISTRY, MEDICINAL
Jing Chen,Leyang Zhang,Zhipan Liang
{"title":"利用双通道图和超图卷积网络发现微生物潜在的疾病特征。","authors":"Jing Chen,Leyang Zhang,Zhipan Liang","doi":"10.1021/acs.jcim.5c00224","DOIUrl":null,"url":null,"abstract":"Discovering microbes underlying disease traits opens up opportunities for the diagnosis and effective treatment of diseases. However, traditional methods are often based on biological experiments, which are not only time-consuming but also costly, driving the need for computational frameworks that can accelerate the discovery of these associations. Motivated by these challenges, we propose an innovative prediction algorithm named dual-channel graph and Hypergraph Convolutional Network (DCGHCN) to discover microbes underlying disease traits. First, based on the K-Nearest Neighbors (KNN) principle, we constructed attribute graphs for microbes and diseases, respectively. Next, Graph Convolutional Networks (GCNs) are used to capture homogeneous level implicit representations from attribute graphs of microbes and diseases. We used the output of the GCN layer as input to construct a hypergraph convolutional layer of microbes and diseases, to evaluate the impact of the confirmed microbes and diseases associations (MDAs) on the prediction results. Perform scalar product calculation on the microbe and disease features to determine the predicted score. The innovation of DCGHCN lies in employing the KNN algorithm to handle missing values in the correlation matrix during preprocessing and the use of a dual-channel structure to combine the advantages of GCNs and Hypergraph Convolutional Networks (HGCNs). We used 5-fold cross-validation (CV) to evaluate the performance of DCGHCN. The results showed that the DCGHCN model achieved AUC (Area Under the ROC Curve), AUPR (Area Under the PR Curve), F1-score and accuracy of 0.9415, 0.7637, 0.7515, and 0.9818. We selected two diseases for case studies, and a large number of published literature conclusions confirmed the prediction results of DCGHCN, thus proving that DCGHCN is an effective tool for discovering microbes underlying disease traits.","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"129 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing Dual-Channel Graph and Hypergraph Convolution Network to Discover Microbes Underlying Disease Traits.\",\"authors\":\"Jing Chen,Leyang Zhang,Zhipan Liang\",\"doi\":\"10.1021/acs.jcim.5c00224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discovering microbes underlying disease traits opens up opportunities for the diagnosis and effective treatment of diseases. However, traditional methods are often based on biological experiments, which are not only time-consuming but also costly, driving the need for computational frameworks that can accelerate the discovery of these associations. Motivated by these challenges, we propose an innovative prediction algorithm named dual-channel graph and Hypergraph Convolutional Network (DCGHCN) to discover microbes underlying disease traits. First, based on the K-Nearest Neighbors (KNN) principle, we constructed attribute graphs for microbes and diseases, respectively. Next, Graph Convolutional Networks (GCNs) are used to capture homogeneous level implicit representations from attribute graphs of microbes and diseases. We used the output of the GCN layer as input to construct a hypergraph convolutional layer of microbes and diseases, to evaluate the impact of the confirmed microbes and diseases associations (MDAs) on the prediction results. Perform scalar product calculation on the microbe and disease features to determine the predicted score. The innovation of DCGHCN lies in employing the KNN algorithm to handle missing values in the correlation matrix during preprocessing and the use of a dual-channel structure to combine the advantages of GCNs and Hypergraph Convolutional Networks (HGCNs). We used 5-fold cross-validation (CV) to evaluate the performance of DCGHCN. The results showed that the DCGHCN model achieved AUC (Area Under the ROC Curve), AUPR (Area Under the PR Curve), F1-score and accuracy of 0.9415, 0.7637, 0.7515, and 0.9818. We selected two diseases for case studies, and a large number of published literature conclusions confirmed the prediction results of DCGHCN, thus proving that DCGHCN is an effective tool for discovering microbes underlying disease traits.\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"129 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.5c00224\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c00224","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

发现潜在疾病特征的微生物为疾病的诊断和有效治疗开辟了机会。然而,传统的方法通常是基于生物实验,这不仅耗时而且昂贵,这推动了对可以加速发现这些关联的计算框架的需求。基于这些挑战,我们提出了一种创新的双通道图和超图卷积网络(DCGHCN)预测算法来发现微生物潜在的疾病特征。首先,基于k近邻(KNN)原理,分别构建了微生物和疾病的属性图。接下来,使用图卷积网络(GCNs)从微生物和疾病的属性图中捕获同质级隐式表示。我们使用GCN层的输出作为输入来构建微生物和疾病的超图卷积层,以评估已确认的微生物和疾病关联(mda)对预测结果的影响。对微生物和疾病特征执行标量积计算,以确定预测分数。DCGHCN的创新之处在于在预处理过程中采用KNN算法处理相关矩阵中的缺失值,并采用双通道结构,结合了GCNs和超图卷积网络(Hypergraph Convolutional Networks, HGCNs)的优点。我们使用5倍交叉验证(CV)来评估DCGHCN的性能。结果表明,DCGHCN模型的AUC (Area Under The ROC Curve)、AUPR (Area Under PR Curve)、f1得分和准确率分别为0.9415、0.7637、0.7515和0.9818。我们选择了两种疾病作为案例研究,大量已发表的文献结论证实了DCGHCN的预测结果,从而证明DCGHCN是发现疾病特征微生物的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilizing Dual-Channel Graph and Hypergraph Convolution Network to Discover Microbes Underlying Disease Traits.
Discovering microbes underlying disease traits opens up opportunities for the diagnosis and effective treatment of diseases. However, traditional methods are often based on biological experiments, which are not only time-consuming but also costly, driving the need for computational frameworks that can accelerate the discovery of these associations. Motivated by these challenges, we propose an innovative prediction algorithm named dual-channel graph and Hypergraph Convolutional Network (DCGHCN) to discover microbes underlying disease traits. First, based on the K-Nearest Neighbors (KNN) principle, we constructed attribute graphs for microbes and diseases, respectively. Next, Graph Convolutional Networks (GCNs) are used to capture homogeneous level implicit representations from attribute graphs of microbes and diseases. We used the output of the GCN layer as input to construct a hypergraph convolutional layer of microbes and diseases, to evaluate the impact of the confirmed microbes and diseases associations (MDAs) on the prediction results. Perform scalar product calculation on the microbe and disease features to determine the predicted score. The innovation of DCGHCN lies in employing the KNN algorithm to handle missing values in the correlation matrix during preprocessing and the use of a dual-channel structure to combine the advantages of GCNs and Hypergraph Convolutional Networks (HGCNs). We used 5-fold cross-validation (CV) to evaluate the performance of DCGHCN. The results showed that the DCGHCN model achieved AUC (Area Under the ROC Curve), AUPR (Area Under the PR Curve), F1-score and accuracy of 0.9415, 0.7637, 0.7515, and 0.9818. We selected two diseases for case studies, and a large number of published literature conclusions confirmed the prediction results of DCGHCN, thus proving that DCGHCN is an effective tool for discovering microbes underlying disease traits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信