Jin-Yong Chung, Nelmari Ruiz-Otero, Ronadip R. Banerjee
{"title":"c-Jun调节产后β-细胞凋亡和下游催乳素信号的存活。","authors":"Jin-Yong Chung, Nelmari Ruiz-Otero, Ronadip R. Banerjee","doi":"10.1016/j.mce.2025.112570","DOIUrl":null,"url":null,"abstract":"<div><div>Pregnancy and postpartum states drive dynamic expansion and regression of maternal β-cell mass. Little is known about what regulates postpartum regression. We recently profiled murine islets from late gestation and early postpartum to identify regulators of β-cell apoptosis or survival. One hit was c-Jun, a transcription factor which regulates proliferation, apoptosis, and survival in various tissues. Here, we examine c-Jun regulation and function during gestation and postpartum and in murine and human islets. To examine the regulation of c-Jun within β-cells we used a mouse genetic model lacking β-cell prolactin receptor (PRLR) and stimulation of human and murine cultured islets with recombinant prolactin. Knockdown of c-Jun in MIN6 cells was accomplished using siRNA and lentiviral-shRNA, or in islets using pharmacologic inhibitors. We found that c-Jun expression in β-cells is temporally restricted to late gestation and early postpartum and requires PRLR signaling. Moreover, c-Jun expression was mutually exclusive with apoptotic β-cells identified by TUNEL staining. Prolactin treatment induces c-Jun expression downstream of MAPK/ERK signaling in both murine and human islets. Inhibition of c-Jun blocks prolactin-mediated survival of β-cells following pro-apoptotic stress, via the pro-survival factors <em>Bcl2l1</em> (Bcl-xL) and <em>Birc5</em> (Survivin). Finally, islets from pregnant donors exhibit increased c-Jun expression in β-cells, while absent in β-cells from donors with gestational diabetes (GDM). Together, our findings indicate that c-Jun contributes to pro-survival effects of lactogens downstream of PRLR/MAPK signaling in β-cells. c-Jun regulation is conserved in human islets and pregnancy and dysregulated in GDM.</div></div>","PeriodicalId":18707,"journal":{"name":"Molecular and Cellular Endocrinology","volume":"606 ","pages":"Article 112570"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"c-Jun regulates postpartum β-cell apoptosis and survival downstream of prolactin signaling\",\"authors\":\"Jin-Yong Chung, Nelmari Ruiz-Otero, Ronadip R. Banerjee\",\"doi\":\"10.1016/j.mce.2025.112570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pregnancy and postpartum states drive dynamic expansion and regression of maternal β-cell mass. Little is known about what regulates postpartum regression. We recently profiled murine islets from late gestation and early postpartum to identify regulators of β-cell apoptosis or survival. One hit was c-Jun, a transcription factor which regulates proliferation, apoptosis, and survival in various tissues. Here, we examine c-Jun regulation and function during gestation and postpartum and in murine and human islets. To examine the regulation of c-Jun within β-cells we used a mouse genetic model lacking β-cell prolactin receptor (PRLR) and stimulation of human and murine cultured islets with recombinant prolactin. Knockdown of c-Jun in MIN6 cells was accomplished using siRNA and lentiviral-shRNA, or in islets using pharmacologic inhibitors. We found that c-Jun expression in β-cells is temporally restricted to late gestation and early postpartum and requires PRLR signaling. Moreover, c-Jun expression was mutually exclusive with apoptotic β-cells identified by TUNEL staining. Prolactin treatment induces c-Jun expression downstream of MAPK/ERK signaling in both murine and human islets. Inhibition of c-Jun blocks prolactin-mediated survival of β-cells following pro-apoptotic stress, via the pro-survival factors <em>Bcl2l1</em> (Bcl-xL) and <em>Birc5</em> (Survivin). Finally, islets from pregnant donors exhibit increased c-Jun expression in β-cells, while absent in β-cells from donors with gestational diabetes (GDM). Together, our findings indicate that c-Jun contributes to pro-survival effects of lactogens downstream of PRLR/MAPK signaling in β-cells. c-Jun regulation is conserved in human islets and pregnancy and dysregulated in GDM.</div></div>\",\"PeriodicalId\":18707,\"journal\":{\"name\":\"Molecular and Cellular Endocrinology\",\"volume\":\"606 \",\"pages\":\"Article 112570\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0303720725001212\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303720725001212","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
c-Jun regulates postpartum β-cell apoptosis and survival downstream of prolactin signaling
Pregnancy and postpartum states drive dynamic expansion and regression of maternal β-cell mass. Little is known about what regulates postpartum regression. We recently profiled murine islets from late gestation and early postpartum to identify regulators of β-cell apoptosis or survival. One hit was c-Jun, a transcription factor which regulates proliferation, apoptosis, and survival in various tissues. Here, we examine c-Jun regulation and function during gestation and postpartum and in murine and human islets. To examine the regulation of c-Jun within β-cells we used a mouse genetic model lacking β-cell prolactin receptor (PRLR) and stimulation of human and murine cultured islets with recombinant prolactin. Knockdown of c-Jun in MIN6 cells was accomplished using siRNA and lentiviral-shRNA, or in islets using pharmacologic inhibitors. We found that c-Jun expression in β-cells is temporally restricted to late gestation and early postpartum and requires PRLR signaling. Moreover, c-Jun expression was mutually exclusive with apoptotic β-cells identified by TUNEL staining. Prolactin treatment induces c-Jun expression downstream of MAPK/ERK signaling in both murine and human islets. Inhibition of c-Jun blocks prolactin-mediated survival of β-cells following pro-apoptotic stress, via the pro-survival factors Bcl2l1 (Bcl-xL) and Birc5 (Survivin). Finally, islets from pregnant donors exhibit increased c-Jun expression in β-cells, while absent in β-cells from donors with gestational diabetes (GDM). Together, our findings indicate that c-Jun contributes to pro-survival effects of lactogens downstream of PRLR/MAPK signaling in β-cells. c-Jun regulation is conserved in human islets and pregnancy and dysregulated in GDM.
期刊介绍:
Molecular and Cellular Endocrinology was established in 1974 to meet the demand for integrated publication on all aspects related to the genetic and biochemical effects, synthesis and secretions of extracellular signals (hormones, neurotransmitters, etc.) and to the understanding of cellular regulatory mechanisms involved in hormonal control.