Ibai Irastorza-Azcarate, Alexander Kukalev, Rieke Kempfer, Christoph J Thieme, Guido Mastrobuoni, Julia Markowski, Gesa Loof, Thomas M Sparks, Emily Brookes, Kedar Nath Natarajan, Stephan Sauer, Amanda G Fisher, Mario Nicodemi, Bing Ren, Roland F Schwarz, Stefan Kempa, Ana Pombo
{"title":"哺乳动物细胞中同源染色体之间广泛的折叠变异性。","authors":"Ibai Irastorza-Azcarate, Alexander Kukalev, Rieke Kempfer, Christoph J Thieme, Guido Mastrobuoni, Julia Markowski, Gesa Loof, Thomas M Sparks, Emily Brookes, Kedar Nath Natarajan, Stephan Sauer, Amanda G Fisher, Mario Nicodemi, Bing Ren, Roland F Schwarz, Stefan Kempa, Ana Pombo","doi":"10.1038/s44320-025-00107-3","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic variation and 3D chromatin structure have major roles in gene regulation. Due to challenges in mapping chromatin conformation with haplotype-specific resolution, the effects of genetic sequence variation on 3D genome structure and gene expression imbalance remain understudied. Here, we applied Genome Architecture Mapping (GAM) to a hybrid mouse embryonic stem cell (mESC) line with high density of single-nucleotide polymorphisms (SNPs). GAM resolved haplotype-specific 3D genome structures with high sensitivity, revealing extensive allelic differences in chromatin compartments, topologically associating domains (TADs), long-range enhancer-promoter contacts, and CTCF loops. Architectural differences often coincide with allele-specific differences in gene expression, and with Polycomb occupancy. We show that histone genes are expressed with allelic imbalance in mESCs, and are involved in haplotype-specific chromatin contacts marked by H3K27me3. Conditional knockouts of Polycomb enzymatic subunits, Ezh2 or Ring1, show that one-third of ASE genes, including histone genes, is regulated through Polycomb repression. Our work reveals highly distinct 3D folding structures between homologous chromosomes, and highlights their intricate connections with allelic gene expression.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extensive folding variability between homologous chromosomes in mammalian cells.\",\"authors\":\"Ibai Irastorza-Azcarate, Alexander Kukalev, Rieke Kempfer, Christoph J Thieme, Guido Mastrobuoni, Julia Markowski, Gesa Loof, Thomas M Sparks, Emily Brookes, Kedar Nath Natarajan, Stephan Sauer, Amanda G Fisher, Mario Nicodemi, Bing Ren, Roland F Schwarz, Stefan Kempa, Ana Pombo\",\"doi\":\"10.1038/s44320-025-00107-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genetic variation and 3D chromatin structure have major roles in gene regulation. Due to challenges in mapping chromatin conformation with haplotype-specific resolution, the effects of genetic sequence variation on 3D genome structure and gene expression imbalance remain understudied. Here, we applied Genome Architecture Mapping (GAM) to a hybrid mouse embryonic stem cell (mESC) line with high density of single-nucleotide polymorphisms (SNPs). GAM resolved haplotype-specific 3D genome structures with high sensitivity, revealing extensive allelic differences in chromatin compartments, topologically associating domains (TADs), long-range enhancer-promoter contacts, and CTCF loops. Architectural differences often coincide with allele-specific differences in gene expression, and with Polycomb occupancy. We show that histone genes are expressed with allelic imbalance in mESCs, and are involved in haplotype-specific chromatin contacts marked by H3K27me3. Conditional knockouts of Polycomb enzymatic subunits, Ezh2 or Ring1, show that one-third of ASE genes, including histone genes, is regulated through Polycomb repression. Our work reveals highly distinct 3D folding structures between homologous chromosomes, and highlights their intricate connections with allelic gene expression.</p>\",\"PeriodicalId\":18906,\"journal\":{\"name\":\"Molecular Systems Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44320-025-00107-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44320-025-00107-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Extensive folding variability between homologous chromosomes in mammalian cells.
Genetic variation and 3D chromatin structure have major roles in gene regulation. Due to challenges in mapping chromatin conformation with haplotype-specific resolution, the effects of genetic sequence variation on 3D genome structure and gene expression imbalance remain understudied. Here, we applied Genome Architecture Mapping (GAM) to a hybrid mouse embryonic stem cell (mESC) line with high density of single-nucleotide polymorphisms (SNPs). GAM resolved haplotype-specific 3D genome structures with high sensitivity, revealing extensive allelic differences in chromatin compartments, topologically associating domains (TADs), long-range enhancer-promoter contacts, and CTCF loops. Architectural differences often coincide with allele-specific differences in gene expression, and with Polycomb occupancy. We show that histone genes are expressed with allelic imbalance in mESCs, and are involved in haplotype-specific chromatin contacts marked by H3K27me3. Conditional knockouts of Polycomb enzymatic subunits, Ezh2 or Ring1, show that one-third of ASE genes, including histone genes, is regulated through Polycomb repression. Our work reveals highly distinct 3D folding structures between homologous chromosomes, and highlights their intricate connections with allelic gene expression.
期刊介绍:
Systems biology is a field that aims to understand complex biological systems by studying their components and how they interact. It is an integrative discipline that seeks to explain the properties and behavior of these systems.
Molecular Systems Biology is a scholarly journal that publishes top-notch research in the areas of systems biology, synthetic biology, and systems medicine. It is an open access journal, meaning that its content is freely available to readers, and it is peer-reviewed to ensure the quality of the published work.