{"title":"GAMMNet:基于声音的呼吸疾病检测的多模态深度网络中的多头注意门控。","authors":"Shaokang Liu, Zhaoji Dai, Zihong Zhuang, Xianwei Zheng, Minfan He, Qing Miao","doi":"10.1109/JBHI.2025.3569160","DOIUrl":null,"url":null,"abstract":"<p><p>Respiratory diseases present significant challenges to global health due to their high morbidity and mortality rates. Traditional diagnostic methods, such as chest radiographs and blood tests, often lead to unnecessary costs and resource strain, as well as potential risks of cross-contamination during these procedures. In recent years, contactless sensing and intelligent technologies, particularly multi-modal sound-based deep learning methods, have emerged as promising solutions for the early detection of respiratory diseases. While these methods have shown encouraging results, the integration of multi-modal features has not been sufficiently explored, which limits the enhancement of diagnostic accuracy. To address this issue, we introduce GAMMNet, a novel multi-modal neural network designed to enhance the detection of respiratory diseases by leveraging multi-modal sound data collected from contactless recording devices. GAMMNet utilizes a unique gating mechanism that adaptively regulates the influence of each modality on the classification results. Additionally, our model incorporates multi-head attention and linear transformation modules to further enhance classification performance. Our GAMMNet achieves state-of-the-art classification results, compared to existing deep learning based methods, on real-world multi-modal respiratory sound datasets. These findings demonstrate the robustness and effectiveness of GAMMNet in the contactless monitoring and early detection of respiratory diseases.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GAMMNet: Gating Multi-head Attention in a Multi-modal Deep Network for Sound Based Respiratory Disease Detection.\",\"authors\":\"Shaokang Liu, Zhaoji Dai, Zihong Zhuang, Xianwei Zheng, Minfan He, Qing Miao\",\"doi\":\"10.1109/JBHI.2025.3569160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Respiratory diseases present significant challenges to global health due to their high morbidity and mortality rates. Traditional diagnostic methods, such as chest radiographs and blood tests, often lead to unnecessary costs and resource strain, as well as potential risks of cross-contamination during these procedures. In recent years, contactless sensing and intelligent technologies, particularly multi-modal sound-based deep learning methods, have emerged as promising solutions for the early detection of respiratory diseases. While these methods have shown encouraging results, the integration of multi-modal features has not been sufficiently explored, which limits the enhancement of diagnostic accuracy. To address this issue, we introduce GAMMNet, a novel multi-modal neural network designed to enhance the detection of respiratory diseases by leveraging multi-modal sound data collected from contactless recording devices. GAMMNet utilizes a unique gating mechanism that adaptively regulates the influence of each modality on the classification results. Additionally, our model incorporates multi-head attention and linear transformation modules to further enhance classification performance. Our GAMMNet achieves state-of-the-art classification results, compared to existing deep learning based methods, on real-world multi-modal respiratory sound datasets. These findings demonstrate the robustness and effectiveness of GAMMNet in the contactless monitoring and early detection of respiratory diseases.</p>\",\"PeriodicalId\":13073,\"journal\":{\"name\":\"IEEE Journal of Biomedical and Health Informatics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Biomedical and Health Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/JBHI.2025.3569160\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3569160","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
GAMMNet: Gating Multi-head Attention in a Multi-modal Deep Network for Sound Based Respiratory Disease Detection.
Respiratory diseases present significant challenges to global health due to their high morbidity and mortality rates. Traditional diagnostic methods, such as chest radiographs and blood tests, often lead to unnecessary costs and resource strain, as well as potential risks of cross-contamination during these procedures. In recent years, contactless sensing and intelligent technologies, particularly multi-modal sound-based deep learning methods, have emerged as promising solutions for the early detection of respiratory diseases. While these methods have shown encouraging results, the integration of multi-modal features has not been sufficiently explored, which limits the enhancement of diagnostic accuracy. To address this issue, we introduce GAMMNet, a novel multi-modal neural network designed to enhance the detection of respiratory diseases by leveraging multi-modal sound data collected from contactless recording devices. GAMMNet utilizes a unique gating mechanism that adaptively regulates the influence of each modality on the classification results. Additionally, our model incorporates multi-head attention and linear transformation modules to further enhance classification performance. Our GAMMNet achieves state-of-the-art classification results, compared to existing deep learning based methods, on real-world multi-modal respiratory sound datasets. These findings demonstrate the robustness and effectiveness of GAMMNet in the contactless monitoring and early detection of respiratory diseases.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.