Toby R Manders, Christopher A Tan, Yuya Kobayashi, Alexander Wahl, Carlos Araya, Alexandre Colavin, Flavia M Facio, Hillery Metz, Jason Reuter, Laure Frésard, Samskruthi R Padigepati, David A Stafford, Robert L Nussbaum, Keith Nykamp
{"title":"利用大语言模型和贝叶斯推理,利用基因型和表型数据进行种群尺度的变异分类。","authors":"Toby R Manders, Christopher A Tan, Yuya Kobayashi, Alexander Wahl, Carlos Araya, Alexandre Colavin, Flavia M Facio, Hillery Metz, Jason Reuter, Laure Frésard, Samskruthi R Padigepati, David A Stafford, Robert L Nussbaum, Keith Nykamp","doi":"10.1007/s00439-025-02743-z","DOIUrl":null,"url":null,"abstract":"<p><p>Variants of Uncertain Significance (VUS) in genetic testing for hereditary diseases burden patients and clinicians, yet clinical data that could reduce VUS are underutilized due to a lack of scalable strategies. We assessed whether a machine learning approach using genotype and phenotype data could improve variant classification and reduce VUS. In this cohort study of a multi-step machine learning approach, patient data from test requisition forms were used to distinguish patients with molecular diagnoses from controls (\"patient score\"). A generative Bayesian model then used patient scores and variant classifications to infer variant pathogenicity (\"variant score\"). The study included 3.5 million patients referred for clinical genetic testing across various conditions. Primary outcomes were model- and gene-level discrimination, classification performance, probabilistic calibration, and concordance with orthogonal pathogenicity measures. Integration into a semi-quantitative classification framework was based on posterior pathogenicity probabilities matching PPV ≥ 0.99/NPV ≥ 0.95 thresholds, followed by expert review. We generated 1,334 clinical variant models (CVMs); 595 showed high performance in both machine learning steps (AUROCpatient ≥ 0.8 and AUROCvariant ≥ 0.8) on held-out data. High-confidence predictions from these CVMs provided evidence for 5,362 VUS observed in 200,174 patients, representing 23.4% of all VUS observations in these genes. In 17 frequently tested genes, CVMs reclassified over 1,000 unique VUS, reducing VUS report rates by 9-49% per condition. In conclusion, a scalable machine learning approach using underutilized clinical data improved variant classification and reduced VUS.</p>","PeriodicalId":13175,"journal":{"name":"Human Genetics","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing genotype and phenotype data for population-scale variant classification using large language models and bayesian inference.\",\"authors\":\"Toby R Manders, Christopher A Tan, Yuya Kobayashi, Alexander Wahl, Carlos Araya, Alexandre Colavin, Flavia M Facio, Hillery Metz, Jason Reuter, Laure Frésard, Samskruthi R Padigepati, David A Stafford, Robert L Nussbaum, Keith Nykamp\",\"doi\":\"10.1007/s00439-025-02743-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Variants of Uncertain Significance (VUS) in genetic testing for hereditary diseases burden patients and clinicians, yet clinical data that could reduce VUS are underutilized due to a lack of scalable strategies. We assessed whether a machine learning approach using genotype and phenotype data could improve variant classification and reduce VUS. In this cohort study of a multi-step machine learning approach, patient data from test requisition forms were used to distinguish patients with molecular diagnoses from controls (\\\"patient score\\\"). A generative Bayesian model then used patient scores and variant classifications to infer variant pathogenicity (\\\"variant score\\\"). The study included 3.5 million patients referred for clinical genetic testing across various conditions. Primary outcomes were model- and gene-level discrimination, classification performance, probabilistic calibration, and concordance with orthogonal pathogenicity measures. Integration into a semi-quantitative classification framework was based on posterior pathogenicity probabilities matching PPV ≥ 0.99/NPV ≥ 0.95 thresholds, followed by expert review. We generated 1,334 clinical variant models (CVMs); 595 showed high performance in both machine learning steps (AUROCpatient ≥ 0.8 and AUROCvariant ≥ 0.8) on held-out data. High-confidence predictions from these CVMs provided evidence for 5,362 VUS observed in 200,174 patients, representing 23.4% of all VUS observations in these genes. In 17 frequently tested genes, CVMs reclassified over 1,000 unique VUS, reducing VUS report rates by 9-49% per condition. In conclusion, a scalable machine learning approach using underutilized clinical data improved variant classification and reduced VUS.</p>\",\"PeriodicalId\":13175,\"journal\":{\"name\":\"Human Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00439-025-02743-z\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00439-025-02743-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Harnessing genotype and phenotype data for population-scale variant classification using large language models and bayesian inference.
Variants of Uncertain Significance (VUS) in genetic testing for hereditary diseases burden patients and clinicians, yet clinical data that could reduce VUS are underutilized due to a lack of scalable strategies. We assessed whether a machine learning approach using genotype and phenotype data could improve variant classification and reduce VUS. In this cohort study of a multi-step machine learning approach, patient data from test requisition forms were used to distinguish patients with molecular diagnoses from controls ("patient score"). A generative Bayesian model then used patient scores and variant classifications to infer variant pathogenicity ("variant score"). The study included 3.5 million patients referred for clinical genetic testing across various conditions. Primary outcomes were model- and gene-level discrimination, classification performance, probabilistic calibration, and concordance with orthogonal pathogenicity measures. Integration into a semi-quantitative classification framework was based on posterior pathogenicity probabilities matching PPV ≥ 0.99/NPV ≥ 0.95 thresholds, followed by expert review. We generated 1,334 clinical variant models (CVMs); 595 showed high performance in both machine learning steps (AUROCpatient ≥ 0.8 and AUROCvariant ≥ 0.8) on held-out data. High-confidence predictions from these CVMs provided evidence for 5,362 VUS observed in 200,174 patients, representing 23.4% of all VUS observations in these genes. In 17 frequently tested genes, CVMs reclassified over 1,000 unique VUS, reducing VUS report rates by 9-49% per condition. In conclusion, a scalable machine learning approach using underutilized clinical data improved variant classification and reduced VUS.
期刊介绍:
Human Genetics is a monthly journal publishing original and timely articles on all aspects of human genetics. The Journal particularly welcomes articles in the areas of Behavioral genetics, Bioinformatics, Cancer genetics and genomics, Cytogenetics, Developmental genetics, Disease association studies, Dysmorphology, ELSI (ethical, legal and social issues), Evolutionary genetics, Gene expression, Gene structure and organization, Genetics of complex diseases and epistatic interactions, Genetic epidemiology, Genome biology, Genome structure and organization, Genotype-phenotype relationships, Human Genomics, Immunogenetics and genomics, Linkage analysis and genetic mapping, Methods in Statistical Genetics, Molecular diagnostics, Mutation detection and analysis, Neurogenetics, Physical mapping and Population Genetics. Articles reporting animal models relevant to human biology or disease are also welcome. Preference will be given to those articles which address clinically relevant questions or which provide new insights into human biology.
Unless reporting entirely novel and unusual aspects of a topic, clinical case reports, cytogenetic case reports, papers on descriptive population genetics, articles dealing with the frequency of polymorphisms or additional mutations within genes in which numerous lesions have already been described, and papers that report meta-analyses of previously published datasets will normally not be accepted.
The Journal typically will not consider for publication manuscripts that report merely the isolation, map position, structure, and tissue expression profile of a gene of unknown function unless the gene is of particular interest or is a candidate gene involved in a human trait or disorder.