{"title":"SVHunter:通过变压器模型进行基于长读的结构变化检测。","authors":"Runtian Gao, Heng Hu, Zhongjun Jiang, Shuqi Cao, Guohua Wang, Yuming Zhao, Tao Jiang","doi":"10.1093/bib/bbaf203","DOIUrl":null,"url":null,"abstract":"<p><p>Structural variations (SVs) are genomic rearrangements larger than 50 bp, that are widely present in the human genome and are associated with various complex diseases. Existing long-read-based SV detection tools often rely on fixed rules or heuristic algorithms, which can oversimplify the complexity of SV signatures. Therefore, these methods usually lack flexibility and cannot fully capture SV signals, leading to reduced accuracy and robustness. To address these issues, we propose SVHunter, a transformer-based method for long-read SV detection. SVHunter combines convolutional neural networks and transformers to capture both local and global SV signatures, enabling accurate identification of SVs. Additionally, SVHunter employs the mean shift clustering algorithm, which dynamically adjusts bandwidth parameters to accommodate different types of SVs without requiring a preset number of clusters, thus allowing precise breakpoint clustering. Validation across multiple sequencing platforms and datasets demonstrates that SVHunter excels at detecting various types of SVs, with a notable reduction in the false discovery rate. This highlights considerable strong potential for both research and clinical applications.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12062572/pdf/","citationCount":"0","resultStr":"{\"title\":\"SVHunter: long-read-based structural variation detection through the transformer model.\",\"authors\":\"Runtian Gao, Heng Hu, Zhongjun Jiang, Shuqi Cao, Guohua Wang, Yuming Zhao, Tao Jiang\",\"doi\":\"10.1093/bib/bbaf203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Structural variations (SVs) are genomic rearrangements larger than 50 bp, that are widely present in the human genome and are associated with various complex diseases. Existing long-read-based SV detection tools often rely on fixed rules or heuristic algorithms, which can oversimplify the complexity of SV signatures. Therefore, these methods usually lack flexibility and cannot fully capture SV signals, leading to reduced accuracy and robustness. To address these issues, we propose SVHunter, a transformer-based method for long-read SV detection. SVHunter combines convolutional neural networks and transformers to capture both local and global SV signatures, enabling accurate identification of SVs. Additionally, SVHunter employs the mean shift clustering algorithm, which dynamically adjusts bandwidth parameters to accommodate different types of SVs without requiring a preset number of clusters, thus allowing precise breakpoint clustering. Validation across multiple sequencing platforms and datasets demonstrates that SVHunter excels at detecting various types of SVs, with a notable reduction in the false discovery rate. This highlights considerable strong potential for both research and clinical applications.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12062572/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf203\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf203","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
SVHunter: long-read-based structural variation detection through the transformer model.
Structural variations (SVs) are genomic rearrangements larger than 50 bp, that are widely present in the human genome and are associated with various complex diseases. Existing long-read-based SV detection tools often rely on fixed rules or heuristic algorithms, which can oversimplify the complexity of SV signatures. Therefore, these methods usually lack flexibility and cannot fully capture SV signals, leading to reduced accuracy and robustness. To address these issues, we propose SVHunter, a transformer-based method for long-read SV detection. SVHunter combines convolutional neural networks and transformers to capture both local and global SV signatures, enabling accurate identification of SVs. Additionally, SVHunter employs the mean shift clustering algorithm, which dynamically adjusts bandwidth parameters to accommodate different types of SVs without requiring a preset number of clusters, thus allowing precise breakpoint clustering. Validation across multiple sequencing platforms and datasets demonstrates that SVHunter excels at detecting various types of SVs, with a notable reduction in the false discovery rate. This highlights considerable strong potential for both research and clinical applications.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.