靶向CRISPR-Cas9的特异性巨噬细胞RhoA减轻炎性关节炎中破骨细胞发生诱导的关节损伤。

IF 11.7 1区 医学 Q1 CELL BIOLOGY
Jianhai Chen, Jianwei Tan, Nannan Wang, Hui Li, Wenxiang Cheng, Jian Li, Benguo Wang, Adam C Sedgwick, Zhitong Chen, Guojun Chen, Peng Zhang, Wei Zheng, Chengbo Liu, Jingqin Chen
{"title":"靶向CRISPR-Cas9的特异性巨噬细胞RhoA减轻炎性关节炎中破骨细胞发生诱导的关节损伤。","authors":"Jianhai Chen, Jianwei Tan, Nannan Wang, Hui Li, Wenxiang Cheng, Jian Li, Benguo Wang, Adam C Sedgwick, Zhitong Chen, Guojun Chen, Peng Zhang, Wei Zheng, Chengbo Liu, Jingqin Chen","doi":"10.1016/j.xcrm.2025.102046","DOIUrl":null,"url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is the most prevalent inflammatory arthritis with unknown etiology, characterized by synovial inflammation and articular bone erosion. Studies have highlighted that inhibiting macrophage-induced osteoclastogenesis holds promise in mitigating bone destruction. However, specifically halting this pathological cascade remains a challenge for the management of RA. Here, initially, we identify that Ras homolog gene family member A (RhoA) is a pivotal target in inducing osteoclastogenesis of macrophages. Subsequently, we develop a strategy termed specific macrophages RhoA targeting (SMART), in which phosphatidylserine (PS)-enriched macrophage membranes are engineered to deliver macrophage-specific promoter-containing CRISPR-Cas9 plasmids (SMART-Cas9), enabling targeted editing of RhoA in RA joint macrophages. Multiscale imaging techniques confirm the highly specific targeted effect of SMART-Cas9 on the macrophages of inflamed joints. SMART-Cas9 successfully reduces osteoclastogenesis by macrophages, thus mitigating bone erosion by modulating cytoskeletal dynamics and immune balance in inflammatory arthritis, representing a therapeutic avenue for RA and other inflammatory bone diseases.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":"6 4","pages":"102046"},"PeriodicalIF":11.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047524/pdf/","citationCount":"0","resultStr":"{\"title\":\"Specific macrophage RhoA targeting CRISPR-Cas9 for mitigating osteoclastogenesis-induced joint damage in inflammatory arthritis.\",\"authors\":\"Jianhai Chen, Jianwei Tan, Nannan Wang, Hui Li, Wenxiang Cheng, Jian Li, Benguo Wang, Adam C Sedgwick, Zhitong Chen, Guojun Chen, Peng Zhang, Wei Zheng, Chengbo Liu, Jingqin Chen\",\"doi\":\"10.1016/j.xcrm.2025.102046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rheumatoid arthritis (RA) is the most prevalent inflammatory arthritis with unknown etiology, characterized by synovial inflammation and articular bone erosion. Studies have highlighted that inhibiting macrophage-induced osteoclastogenesis holds promise in mitigating bone destruction. However, specifically halting this pathological cascade remains a challenge for the management of RA. Here, initially, we identify that Ras homolog gene family member A (RhoA) is a pivotal target in inducing osteoclastogenesis of macrophages. Subsequently, we develop a strategy termed specific macrophages RhoA targeting (SMART), in which phosphatidylserine (PS)-enriched macrophage membranes are engineered to deliver macrophage-specific promoter-containing CRISPR-Cas9 plasmids (SMART-Cas9), enabling targeted editing of RhoA in RA joint macrophages. Multiscale imaging techniques confirm the highly specific targeted effect of SMART-Cas9 on the macrophages of inflamed joints. SMART-Cas9 successfully reduces osteoclastogenesis by macrophages, thus mitigating bone erosion by modulating cytoskeletal dynamics and immune balance in inflammatory arthritis, representing a therapeutic avenue for RA and other inflammatory bone diseases.</p>\",\"PeriodicalId\":9822,\"journal\":{\"name\":\"Cell Reports Medicine\",\"volume\":\"6 4\",\"pages\":\"102046\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047524/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrm.2025.102046\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.102046","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

类风湿关节炎(RA)是最常见的炎症性关节炎,病因不明,以滑膜炎症和关节骨侵蚀为特征。研究强调,抑制巨噬细胞诱导的破骨细胞生成有望减轻骨破坏。然而,具体阻止这种病理级联仍然是RA管理的一个挑战。在这里,我们首先发现Ras同源基因家族成员A (RhoA)是诱导巨噬细胞破骨细胞发生的关键靶点。随后,我们开发了一种称为特异性巨噬细胞RhoA靶向(SMART)的策略,其中磷脂酰丝氨酸(PS)富集的巨噬细胞膜被改造以传递含有巨噬细胞特异性启动子的CRISPR-Cas9质粒(SMART- cas9),从而能够靶向编辑RA关节巨噬细胞中的RhoA。多尺度成像技术证实了SMART-Cas9对炎症关节巨噬细胞的高度特异性靶向作用。SMART-Cas9成功地减少了巨噬细胞的破骨细胞生成,从而通过调节炎症性关节炎的细胞骨骼动力学和免疫平衡来减轻骨侵蚀,代表了RA和其他炎症性骨病的治疗途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Specific macrophage RhoA targeting CRISPR-Cas9 for mitigating osteoclastogenesis-induced joint damage in inflammatory arthritis.

Rheumatoid arthritis (RA) is the most prevalent inflammatory arthritis with unknown etiology, characterized by synovial inflammation and articular bone erosion. Studies have highlighted that inhibiting macrophage-induced osteoclastogenesis holds promise in mitigating bone destruction. However, specifically halting this pathological cascade remains a challenge for the management of RA. Here, initially, we identify that Ras homolog gene family member A (RhoA) is a pivotal target in inducing osteoclastogenesis of macrophages. Subsequently, we develop a strategy termed specific macrophages RhoA targeting (SMART), in which phosphatidylserine (PS)-enriched macrophage membranes are engineered to deliver macrophage-specific promoter-containing CRISPR-Cas9 plasmids (SMART-Cas9), enabling targeted editing of RhoA in RA joint macrophages. Multiscale imaging techniques confirm the highly specific targeted effect of SMART-Cas9 on the macrophages of inflamed joints. SMART-Cas9 successfully reduces osteoclastogenesis by macrophages, thus mitigating bone erosion by modulating cytoskeletal dynamics and immune balance in inflammatory arthritis, representing a therapeutic avenue for RA and other inflammatory bone diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Medicine
Cell Reports Medicine Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍: Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine. Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信