Fabian Garmroudi, Jennifer Coulter, Illia Serhiienko, Simone Di Cataldo, Michael Parzer, Alexander Riss, Matthias Grasser, Simon Stockinger, Sergii Khmelevskyi, Kacper Pryga, Bartlomiej Wiendlocha, Karsten Held, Takao Mori, Ernst Bauer, Antoine Georges, Andrej Pustogow
{"title":"拓扑平带驱动的金属热电","authors":"Fabian Garmroudi, Jennifer Coulter, Illia Serhiienko, Simone Di Cataldo, Michael Parzer, Alexander Riss, Matthias Grasser, Simon Stockinger, Sergii Khmelevskyi, Kacper Pryga, Bartlomiej Wiendlocha, Karsten Held, Takao Mori, Ernst Bauer, Antoine Georges, Andrej Pustogow","doi":"10.1103/physrevx.15.021054","DOIUrl":null,"url":null,"abstract":"Materials where flattened electronic dispersions arise from destructive phase interference, rather than localized orbitals, have emerged as promising platforms for studying emergent quantum phenomena. Crucial next steps involve tuning such flat bands to the Fermi level, where they can be studied at low energy scales, and assessing their potential for practical applications. Here, we show that the interplay of highly dispersive and ultraflat bands inherent to these systems can lead to extreme interband scattering-induced electron-hole asymmetry, which can be harnessed in thermoelectrics. Our comprehensive theoretical and experimental investigation of Ni</a:mi>3</a:mn></a:msub>In</a:mi>1</a:mn>−</a:mo>x</a:mi></a:mrow></a:msub>Sn</a:mi>x</a:mi></a:msub></a:math> kagome metals supports this concept, showing that it could lead to thermoelectric performance on par with state-of-the-art semiconductors such as <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msub><c:mi>Bi</c:mi><c:mn>2</c:mn></c:msub><c:msub><c:mi>Te</c:mi><c:mn>3</c:mn></c:msub></c:math>. In <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:msub><e:mi>Ni</e:mi><e:mn>3</e:mn></e:msub><e:mi>In</e:mi></e:math>, scattering-induced electron-hole asymmetry is, however, subdued by an exotic conduction mechanism arising from quantum tunneling of charge carriers between Dirac bands, unrelated to the flat band itself. We outline strategies to selectively switch off this tunneling transport through negative chemical pressure or strain. Our study proposes a new direction to explore in topological flat-band systems and vice versa introduces a novel tuning knob for thermoelectric materials. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"49 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological Flat-Band-Driven Metallic Thermoelectricity\",\"authors\":\"Fabian Garmroudi, Jennifer Coulter, Illia Serhiienko, Simone Di Cataldo, Michael Parzer, Alexander Riss, Matthias Grasser, Simon Stockinger, Sergii Khmelevskyi, Kacper Pryga, Bartlomiej Wiendlocha, Karsten Held, Takao Mori, Ernst Bauer, Antoine Georges, Andrej Pustogow\",\"doi\":\"10.1103/physrevx.15.021054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Materials where flattened electronic dispersions arise from destructive phase interference, rather than localized orbitals, have emerged as promising platforms for studying emergent quantum phenomena. Crucial next steps involve tuning such flat bands to the Fermi level, where they can be studied at low energy scales, and assessing their potential for practical applications. Here, we show that the interplay of highly dispersive and ultraflat bands inherent to these systems can lead to extreme interband scattering-induced electron-hole asymmetry, which can be harnessed in thermoelectrics. Our comprehensive theoretical and experimental investigation of Ni</a:mi>3</a:mn></a:msub>In</a:mi>1</a:mn>−</a:mo>x</a:mi></a:mrow></a:msub>Sn</a:mi>x</a:mi></a:msub></a:math> kagome metals supports this concept, showing that it could lead to thermoelectric performance on par with state-of-the-art semiconductors such as <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:msub><c:mi>Bi</c:mi><c:mn>2</c:mn></c:msub><c:msub><c:mi>Te</c:mi><c:mn>3</c:mn></c:msub></c:math>. In <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:msub><e:mi>Ni</e:mi><e:mn>3</e:mn></e:msub><e:mi>In</e:mi></e:math>, scattering-induced electron-hole asymmetry is, however, subdued by an exotic conduction mechanism arising from quantum tunneling of charge carriers between Dirac bands, unrelated to the flat band itself. We outline strategies to selectively switch off this tunneling transport through negative chemical pressure or strain. Our study proposes a new direction to explore in topological flat-band systems and vice versa introduces a novel tuning knob for thermoelectric materials. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.15.021054\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021054","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Materials where flattened electronic dispersions arise from destructive phase interference, rather than localized orbitals, have emerged as promising platforms for studying emergent quantum phenomena. Crucial next steps involve tuning such flat bands to the Fermi level, where they can be studied at low energy scales, and assessing their potential for practical applications. Here, we show that the interplay of highly dispersive and ultraflat bands inherent to these systems can lead to extreme interband scattering-induced electron-hole asymmetry, which can be harnessed in thermoelectrics. Our comprehensive theoretical and experimental investigation of Ni3In1−xSnx kagome metals supports this concept, showing that it could lead to thermoelectric performance on par with state-of-the-art semiconductors such as Bi2Te3. In Ni3In, scattering-induced electron-hole asymmetry is, however, subdued by an exotic conduction mechanism arising from quantum tunneling of charge carriers between Dirac bands, unrelated to the flat band itself. We outline strategies to selectively switch off this tunneling transport through negative chemical pressure or strain. Our study proposes a new direction to explore in topological flat-band systems and vice versa introduces a novel tuning knob for thermoelectric materials. Published by the American Physical Society2025
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.