{"title":"高光谱分辨率的系外行星大气","authors":"Ignas A.G. Snellen","doi":"10.1146/annurev-astro-052622-031342","DOIUrl":null,"url":null,"abstract":"High-resolution spectroscopy (HRS) has grown into one of the main techniques for characterizing the atmospheres of extrasolar planets. High spectral resolving power allows for the efficient removal of telluric and host-star contamination. Combined with the large collecting area of ground-based telescopes, it enables detailed studies of atmospheric species, temperature structure, atmospheric loss, and global winds and circulation patterns. In this review, the wide range of HRS observation and data analysis techniques are described and literature results discussed. Key findings include the following: <jats:list list-type=\"bullet\"> <jats:list-item> <jats:label>▪</jats:label> The highest irradiated planets show a rich spectrum of atomic and ionic species, just like stars. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Retrieval analyses of hot Jupiters and directly imaged super-Jupiters point to solar metallicities and chemistry, but observed samples are still heterogeneous and incomplete. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> There appears to be a clear dichotomy between hot Jupiters with and without atmospheric inversions, depending on their equilibrium temperature. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Some highly irradiated planets exhibit enormous leading and/or trailing tails of helium gas, providing unique insights into planet evolution and atmospheric escape processes. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Minor isotopes of carbon and oxygen are now being detected in gas giant planets and brown dwarfs with the interesting potential to shed light on formation pathways. </jats:list-item> </jats:list> A list of potential pitfalls is provided for those new to the field, and synergies with the <jats:italic>James Webb Space Telescope</jats:italic> are discussed. HRS has a great future ahead with the advent of the extremely large telescopes, promising to bring temperate rocky exoplanets into view with their increase in HRS detection speed of up to three orders of magnitude.","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":"42 1","pages":""},"PeriodicalIF":26.3000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exoplanet Atmospheres at High Spectral Resolution\",\"authors\":\"Ignas A.G. Snellen\",\"doi\":\"10.1146/annurev-astro-052622-031342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-resolution spectroscopy (HRS) has grown into one of the main techniques for characterizing the atmospheres of extrasolar planets. High spectral resolving power allows for the efficient removal of telluric and host-star contamination. Combined with the large collecting area of ground-based telescopes, it enables detailed studies of atmospheric species, temperature structure, atmospheric loss, and global winds and circulation patterns. In this review, the wide range of HRS observation and data analysis techniques are described and literature results discussed. Key findings include the following: <jats:list list-type=\\\"bullet\\\"> <jats:list-item> <jats:label>▪</jats:label> The highest irradiated planets show a rich spectrum of atomic and ionic species, just like stars. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Retrieval analyses of hot Jupiters and directly imaged super-Jupiters point to solar metallicities and chemistry, but observed samples are still heterogeneous and incomplete. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> There appears to be a clear dichotomy between hot Jupiters with and without atmospheric inversions, depending on their equilibrium temperature. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Some highly irradiated planets exhibit enormous leading and/or trailing tails of helium gas, providing unique insights into planet evolution and atmospheric escape processes. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Minor isotopes of carbon and oxygen are now being detected in gas giant planets and brown dwarfs with the interesting potential to shed light on formation pathways. </jats:list-item> </jats:list> A list of potential pitfalls is provided for those new to the field, and synergies with the <jats:italic>James Webb Space Telescope</jats:italic> are discussed. HRS has a great future ahead with the advent of the extremely large telescopes, promising to bring temperate rocky exoplanets into view with their increase in HRS detection speed of up to three orders of magnitude.\",\"PeriodicalId\":8138,\"journal\":{\"name\":\"Annual Review of Astronomy and Astrophysics\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":26.3000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Astronomy and Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-astro-052622-031342\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Astronomy and Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-astro-052622-031342","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
High-resolution spectroscopy (HRS) has grown into one of the main techniques for characterizing the atmospheres of extrasolar planets. High spectral resolving power allows for the efficient removal of telluric and host-star contamination. Combined with the large collecting area of ground-based telescopes, it enables detailed studies of atmospheric species, temperature structure, atmospheric loss, and global winds and circulation patterns. In this review, the wide range of HRS observation and data analysis techniques are described and literature results discussed. Key findings include the following: ▪ The highest irradiated planets show a rich spectrum of atomic and ionic species, just like stars. ▪ Retrieval analyses of hot Jupiters and directly imaged super-Jupiters point to solar metallicities and chemistry, but observed samples are still heterogeneous and incomplete. ▪ There appears to be a clear dichotomy between hot Jupiters with and without atmospheric inversions, depending on their equilibrium temperature. ▪ Some highly irradiated planets exhibit enormous leading and/or trailing tails of helium gas, providing unique insights into planet evolution and atmospheric escape processes. ▪ Minor isotopes of carbon and oxygen are now being detected in gas giant planets and brown dwarfs with the interesting potential to shed light on formation pathways. A list of potential pitfalls is provided for those new to the field, and synergies with the James Webb Space Telescope are discussed. HRS has a great future ahead with the advent of the extremely large telescopes, promising to bring temperate rocky exoplanets into view with their increase in HRS detection speed of up to three orders of magnitude.
期刊介绍:
The Annual Review of Astronomy and Astrophysics is covers significant developments in the field of astronomy and astrophysics including:The Sun,Solar system and extrasolar planets,Stars,Interstellar medium,Galaxy and galaxies,Active galactic nuclei,Cosmology,Instrumentation and techniques,
History of the development of new areas of research.