{"title":"种间杂交通过染色质可及性和DNA甲基化对基因表达的调控,导致芸苔属植物农艺性状的变化。","authors":"Chengtao Quan, Qin Zhang, Xiaoni Zhang, Kexin Chai, Guoting Cheng, Chaozhi Ma, Cheng Dai","doi":"10.1093/gigascience/giaf029","DOIUrl":null,"url":null,"abstract":"<p><p>Interspecific hybridization is a common method in plant breeding to combine traits from different species, resulting in allopolyploidization and significant genetic and epigenetic changes. However, our understanding of genome-wide chromatin and gene expression dynamics during allopolyploidization remains limited. This study generated two Brassica allotriploid hybrids via interspecific hybridization. We observed that accessible chromatin regions (ACRs) and DNA methylation interact to regulates gene expression after interspecific hybridization, ultimately influencing the agronomic traits of the hybrids. In total, 234,649 ACRs were identified in the parental lines and hybrids; the hybridization process induces changes in the distribution and abundance of their accessible chromatin regions, particularly in gene regions and their proximity. Genes associated with proximal ACRs were more highly expressed than those associated with distal and genic ACRs. More than half of novel ACRs drove transgressive gene expression in the hybrids, and the transgressive upregulated genes showed significant enrichment in metal ion binding, especially magnesium ion, calcium ion, and potassium ion binding. We also identified Bna.bZIP11 in the single-parent activation ACR, which binds to BnaA06.UF3GT to promote anthocyanin accumulation in F1 hybrids. DNA methylation plays a role in repressing gene expression, and unmethylated ACRs are more transcriptionally active. Additionally, the A-subgenome ACRs were associated with genome dosage rather than DNA methylation. The interplay among DNA methylation, transposable elements, and sRNA contributes to the dynamic landscape of ACRs during interspecific hybridization, resulting in distinct gene expression patterns on the genome.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12012897/pdf/","citationCount":"0","resultStr":"{\"title\":\"Interspecific hybridization in Brassica species leads to changes in agronomic traits through the regulation of gene expression by chromatin accessibility and DNA methylation.\",\"authors\":\"Chengtao Quan, Qin Zhang, Xiaoni Zhang, Kexin Chai, Guoting Cheng, Chaozhi Ma, Cheng Dai\",\"doi\":\"10.1093/gigascience/giaf029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interspecific hybridization is a common method in plant breeding to combine traits from different species, resulting in allopolyploidization and significant genetic and epigenetic changes. However, our understanding of genome-wide chromatin and gene expression dynamics during allopolyploidization remains limited. This study generated two Brassica allotriploid hybrids via interspecific hybridization. We observed that accessible chromatin regions (ACRs) and DNA methylation interact to regulates gene expression after interspecific hybridization, ultimately influencing the agronomic traits of the hybrids. In total, 234,649 ACRs were identified in the parental lines and hybrids; the hybridization process induces changes in the distribution and abundance of their accessible chromatin regions, particularly in gene regions and their proximity. Genes associated with proximal ACRs were more highly expressed than those associated with distal and genic ACRs. More than half of novel ACRs drove transgressive gene expression in the hybrids, and the transgressive upregulated genes showed significant enrichment in metal ion binding, especially magnesium ion, calcium ion, and potassium ion binding. We also identified Bna.bZIP11 in the single-parent activation ACR, which binds to BnaA06.UF3GT to promote anthocyanin accumulation in F1 hybrids. DNA methylation plays a role in repressing gene expression, and unmethylated ACRs are more transcriptionally active. Additionally, the A-subgenome ACRs were associated with genome dosage rather than DNA methylation. The interplay among DNA methylation, transposable elements, and sRNA contributes to the dynamic landscape of ACRs during interspecific hybridization, resulting in distinct gene expression patterns on the genome.</p>\",\"PeriodicalId\":12581,\"journal\":{\"name\":\"GigaScience\",\"volume\":\"14 \",\"pages\":\"\"},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12012897/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaScience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gigascience/giaf029\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giaf029","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Interspecific hybridization in Brassica species leads to changes in agronomic traits through the regulation of gene expression by chromatin accessibility and DNA methylation.
Interspecific hybridization is a common method in plant breeding to combine traits from different species, resulting in allopolyploidization and significant genetic and epigenetic changes. However, our understanding of genome-wide chromatin and gene expression dynamics during allopolyploidization remains limited. This study generated two Brassica allotriploid hybrids via interspecific hybridization. We observed that accessible chromatin regions (ACRs) and DNA methylation interact to regulates gene expression after interspecific hybridization, ultimately influencing the agronomic traits of the hybrids. In total, 234,649 ACRs were identified in the parental lines and hybrids; the hybridization process induces changes in the distribution and abundance of their accessible chromatin regions, particularly in gene regions and their proximity. Genes associated with proximal ACRs were more highly expressed than those associated with distal and genic ACRs. More than half of novel ACRs drove transgressive gene expression in the hybrids, and the transgressive upregulated genes showed significant enrichment in metal ion binding, especially magnesium ion, calcium ion, and potassium ion binding. We also identified Bna.bZIP11 in the single-parent activation ACR, which binds to BnaA06.UF3GT to promote anthocyanin accumulation in F1 hybrids. DNA methylation plays a role in repressing gene expression, and unmethylated ACRs are more transcriptionally active. Additionally, the A-subgenome ACRs were associated with genome dosage rather than DNA methylation. The interplay among DNA methylation, transposable elements, and sRNA contributes to the dynamic landscape of ACRs during interspecific hybridization, resulting in distinct gene expression patterns on the genome.
期刊介绍:
GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.