定量T1对多发性硬化症的皮质再髓鞘形成敏感:一项死后MRI研究。

IF 5.8 2区 医学 Q1 CLINICAL NEUROLOGY
Brain Pathology Pub Date : 2025-04-14 DOI:10.1111/bpa.70010
Riccardo Galbusera, Matthias Weigel, Erik Bahn, Sabine Schaedelin, Alessandro Cagol, Po-Jui Lu, Muhamed Barakovic, Lester Melie-Garcia, Jonas Franz, Peter Dechent, Govind Nair, Ludwig Kappos, Wolfgang Brück, Christine Stadelmann, Cristina Granziera
{"title":"定量T1对多发性硬化症的皮质再髓鞘形成敏感:一项死后MRI研究。","authors":"Riccardo Galbusera, Matthias Weigel, Erik Bahn, Sabine Schaedelin, Alessandro Cagol, Po-Jui Lu, Muhamed Barakovic, Lester Melie-Garcia, Jonas Franz, Peter Dechent, Govind Nair, Ludwig Kappos, Wolfgang Brück, Christine Stadelmann, Cristina Granziera","doi":"10.1111/bpa.70010","DOIUrl":null,"url":null,"abstract":"<p><p>Remyelination of cortical lesions in people with multiple sclerosis (pwMS) has been shown to be extensive. In this work, we aimed to assess whether postmortem quantitative MRI (qMRI) can help detect those areas. We imaged six fixed whole brains of deceased pwMS by 3T-MRI using magnetization transfer ratio (MTR, 570 μm isotropic), myelin water fraction (MWF, 1000 μm isotropic), quantitative T1 (qT1, 670 μm isotropic), quantitative susceptibility mapping (QSM, 330 μm isotropic) and radial diffusivity (RD, 1300 or 1400 μm isotropic) maps. Immunohistochemistry for myelin proteins was performed in 129 tissue blocks including the cortex and enabled the detection of cortical demyelination (DM), cortical remyelination (RM), and normal-appearing cortex (NAC). We identified 25 DM, 25 RM, and for each of these areas, a corresponding NAC near the lesion. Wilcoxon paired tests showed that: (a) qT1 and RD were higher and QSM lower in DM versus NAC (all p < 0.001), whereas RD was higher and QSM lower in RM versus NAC (p = 0.048 and p < 0.01 respectively); (b) mean qT1 in RM did not differ from mean qT1 in NAC (p = 0.074); (c) MWF and MTR were not different between DM and RM. We compared the delta between DM versus NAC (∆DM) and the delta between RM versus NAC (∆RM) using a Mann-Whitney test, in which RM showed a partial recovery of qT1 only (∆qT1 DM > ∆qT1 RM, p = 0.045). Mixed-effect models confirmed the findings obtained using univariate analyses. qT1 and QSM, but not RD, correlated with MBP intensity (r = -0.28, p < 0.01 and r = 0.29, p < 0.01 respectively). A Bonferroni correction was performed for multiple testing. Our data show that qT1 is altered in demyelinated but not in remyelinated cortical areas, while QSM and RD are affected by any cortical abnormalities. Accordingly, qT1 might be considered a potential imaging biomarker of cortical RM.</p>","PeriodicalId":9290,"journal":{"name":"Brain Pathology","volume":" ","pages":"e70010"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative T1 is sensitive to cortical remyelination in multiple sclerosis: A postmortem MRI study.\",\"authors\":\"Riccardo Galbusera, Matthias Weigel, Erik Bahn, Sabine Schaedelin, Alessandro Cagol, Po-Jui Lu, Muhamed Barakovic, Lester Melie-Garcia, Jonas Franz, Peter Dechent, Govind Nair, Ludwig Kappos, Wolfgang Brück, Christine Stadelmann, Cristina Granziera\",\"doi\":\"10.1111/bpa.70010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Remyelination of cortical lesions in people with multiple sclerosis (pwMS) has been shown to be extensive. In this work, we aimed to assess whether postmortem quantitative MRI (qMRI) can help detect those areas. We imaged six fixed whole brains of deceased pwMS by 3T-MRI using magnetization transfer ratio (MTR, 570 μm isotropic), myelin water fraction (MWF, 1000 μm isotropic), quantitative T1 (qT1, 670 μm isotropic), quantitative susceptibility mapping (QSM, 330 μm isotropic) and radial diffusivity (RD, 1300 or 1400 μm isotropic) maps. Immunohistochemistry for myelin proteins was performed in 129 tissue blocks including the cortex and enabled the detection of cortical demyelination (DM), cortical remyelination (RM), and normal-appearing cortex (NAC). We identified 25 DM, 25 RM, and for each of these areas, a corresponding NAC near the lesion. Wilcoxon paired tests showed that: (a) qT1 and RD were higher and QSM lower in DM versus NAC (all p < 0.001), whereas RD was higher and QSM lower in RM versus NAC (p = 0.048 and p < 0.01 respectively); (b) mean qT1 in RM did not differ from mean qT1 in NAC (p = 0.074); (c) MWF and MTR were not different between DM and RM. We compared the delta between DM versus NAC (∆DM) and the delta between RM versus NAC (∆RM) using a Mann-Whitney test, in which RM showed a partial recovery of qT1 only (∆qT1 DM > ∆qT1 RM, p = 0.045). Mixed-effect models confirmed the findings obtained using univariate analyses. qT1 and QSM, but not RD, correlated with MBP intensity (r = -0.28, p < 0.01 and r = 0.29, p < 0.01 respectively). A Bonferroni correction was performed for multiple testing. Our data show that qT1 is altered in demyelinated but not in remyelinated cortical areas, while QSM and RD are affected by any cortical abnormalities. Accordingly, qT1 might be considered a potential imaging biomarker of cortical RM.</p>\",\"PeriodicalId\":9290,\"journal\":{\"name\":\"Brain Pathology\",\"volume\":\" \",\"pages\":\"e70010\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/bpa.70010\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/bpa.70010","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

多发性硬化症(pwMS)患者皮质病变的再髓鞘化已被证明是广泛的。在这项工作中,我们旨在评估死后定量MRI (qMRI)是否可以帮助检测这些区域。采用3T-MRI对6例固定的pwMS全脑进行磁化传递比(MTR, 570 μm各向同性)、髓鞘水分数(MWF, 1000 μm各向同性)、定量T1 (qT1, 670 μm各向同性)、定量敏感性作图(QSM, 330 μm各向同性)和径向扩散率(RD, 1300或1400 μm各向同性)作图。在包括皮质在内的129个组织块中对髓鞘蛋白进行免疫组化,并检测皮质脱髓鞘(DM)、皮质再髓鞘(RM)和正常皮质(NAC)。我们确定了25个DM, 25个RM,对于每个这些区域,在病变附近有一个相应的NAC。Wilcoxon配对检验显示:(a)与NAC相比,DM的qT1和RD更高,QSM更低(均p∆qT1 RM, p = 0.045)。混合效应模型证实了使用单变量分析获得的结果。qT1和QSM与MBP强度相关,但RD无关(r = -0.28, p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative T1 is sensitive to cortical remyelination in multiple sclerosis: A postmortem MRI study.

Remyelination of cortical lesions in people with multiple sclerosis (pwMS) has been shown to be extensive. In this work, we aimed to assess whether postmortem quantitative MRI (qMRI) can help detect those areas. We imaged six fixed whole brains of deceased pwMS by 3T-MRI using magnetization transfer ratio (MTR, 570 μm isotropic), myelin water fraction (MWF, 1000 μm isotropic), quantitative T1 (qT1, 670 μm isotropic), quantitative susceptibility mapping (QSM, 330 μm isotropic) and radial diffusivity (RD, 1300 or 1400 μm isotropic) maps. Immunohistochemistry for myelin proteins was performed in 129 tissue blocks including the cortex and enabled the detection of cortical demyelination (DM), cortical remyelination (RM), and normal-appearing cortex (NAC). We identified 25 DM, 25 RM, and for each of these areas, a corresponding NAC near the lesion. Wilcoxon paired tests showed that: (a) qT1 and RD were higher and QSM lower in DM versus NAC (all p < 0.001), whereas RD was higher and QSM lower in RM versus NAC (p = 0.048 and p < 0.01 respectively); (b) mean qT1 in RM did not differ from mean qT1 in NAC (p = 0.074); (c) MWF and MTR were not different between DM and RM. We compared the delta between DM versus NAC (∆DM) and the delta between RM versus NAC (∆RM) using a Mann-Whitney test, in which RM showed a partial recovery of qT1 only (∆qT1 DM > ∆qT1 RM, p = 0.045). Mixed-effect models confirmed the findings obtained using univariate analyses. qT1 and QSM, but not RD, correlated with MBP intensity (r = -0.28, p < 0.01 and r = 0.29, p < 0.01 respectively). A Bonferroni correction was performed for multiple testing. Our data show that qT1 is altered in demyelinated but not in remyelinated cortical areas, while QSM and RD are affected by any cortical abnormalities. Accordingly, qT1 might be considered a potential imaging biomarker of cortical RM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Pathology
Brain Pathology 医学-病理学
CiteScore
13.20
自引率
3.10%
发文量
90
审稿时长
6-12 weeks
期刊介绍: Brain Pathology is the journal of choice for biomedical scientists investigating diseases of the nervous system. The official journal of the International Society of Neuropathology, Brain Pathology is a peer-reviewed quarterly publication that includes original research, review articles and symposia focuses on the pathogenesis of neurological disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信