有机-矿物生物复合材料在潜在有毒元素污染后工业土壤可持续修复中的应用

IF 3.2 3区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Mariusz Z Gusiatin, Zbigniew Mazur, Maja Radziemska
{"title":"有机-矿物生物复合材料在潜在有毒元素污染后工业土壤可持续修复中的应用","authors":"Mariusz Z Gusiatin, Zbigniew Mazur, Maja Radziemska","doi":"10.1007/s10653-025-02473-1","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous technological innovations have been developed for managing post-industrial soils, but assisted phytostabilization-a sustainable and environmentally friendly approach-has attracted significant global interest. This study evaluates the effectiveness of a novel biocomposite, composed of fish waste compost and chalcedonite, in assisting the phytostabilization of soil contaminated with potentially toxic elements (PTEs), using Lolium perenne L. (perennial ryegrass) as a test plant. The results demonstrated that the biocomposite significantly increased soil pH (by 0.19 units), organic carbon content (by 174.3%), improving soil fertility by increasing nutrient availability (available P by 219.6%, and available K by 146.9%), and plant growth. Additionally, it promoted PTE accumulation in the roots while reducing Pb (44%), Zn (24%), Cu (23%), and Ni (14%) concentrations in the aerial parts, as well as Cd (71%), Ni (33%), and Cu (29%) levels in the soil. The biocomposite also altered the fractionation of PTEs, reducing their mobility and bioavailability. Specifically, it decreased the exchangeable fraction (F1) by 45% for Cu, 71% for Cd, 41% for Pb, and 24% for Zn, effectively limiting their environmental risk. Moreover, it promoted the redistribution of Pb and Zn into the reducible fraction (F2), Cu and Pb into the oxidizable fraction (F3), and Cu, Ni, and Cd into the residual fraction (F4), indicating enhanced stabilization. The highest immobilization efficiencies were observed for Cd (53.9%) and Pb (52.3%), confirming the biocomposite's effectiveness in reducing PTE mobility. These findings highlight the potential of biocomposite amendments in remediating PTE-contaminated soil by improving soil physicochemical properties, reducing PTE bioavailability, and enhancing phytostabilization efficiency. This approach supports sustainable waste valorization and circular economy principles, offering a promising strategy for rehabilitating post-industrial lands with high PTE contamination.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 5","pages":"168"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of an organic-mineral biocomposite for sustainable remediation of post-industrial soil contaminated with potentially toxic elements (PTEs).\",\"authors\":\"Mariusz Z Gusiatin, Zbigniew Mazur, Maja Radziemska\",\"doi\":\"10.1007/s10653-025-02473-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Numerous technological innovations have been developed for managing post-industrial soils, but assisted phytostabilization-a sustainable and environmentally friendly approach-has attracted significant global interest. This study evaluates the effectiveness of a novel biocomposite, composed of fish waste compost and chalcedonite, in assisting the phytostabilization of soil contaminated with potentially toxic elements (PTEs), using Lolium perenne L. (perennial ryegrass) as a test plant. The results demonstrated that the biocomposite significantly increased soil pH (by 0.19 units), organic carbon content (by 174.3%), improving soil fertility by increasing nutrient availability (available P by 219.6%, and available K by 146.9%), and plant growth. Additionally, it promoted PTE accumulation in the roots while reducing Pb (44%), Zn (24%), Cu (23%), and Ni (14%) concentrations in the aerial parts, as well as Cd (71%), Ni (33%), and Cu (29%) levels in the soil. The biocomposite also altered the fractionation of PTEs, reducing their mobility and bioavailability. Specifically, it decreased the exchangeable fraction (F1) by 45% for Cu, 71% for Cd, 41% for Pb, and 24% for Zn, effectively limiting their environmental risk. Moreover, it promoted the redistribution of Pb and Zn into the reducible fraction (F2), Cu and Pb into the oxidizable fraction (F3), and Cu, Ni, and Cd into the residual fraction (F4), indicating enhanced stabilization. The highest immobilization efficiencies were observed for Cd (53.9%) and Pb (52.3%), confirming the biocomposite's effectiveness in reducing PTE mobility. These findings highlight the potential of biocomposite amendments in remediating PTE-contaminated soil by improving soil physicochemical properties, reducing PTE bioavailability, and enhancing phytostabilization efficiency. This approach supports sustainable waste valorization and circular economy principles, offering a promising strategy for rehabilitating post-industrial lands with high PTE contamination.</p>\",\"PeriodicalId\":11759,\"journal\":{\"name\":\"Environmental Geochemistry and Health\",\"volume\":\"47 5\",\"pages\":\"168\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Geochemistry and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10653-025-02473-1\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-025-02473-1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

为管理后工业土壤已经开发了许多技术创新,但辅助植物稳定-一种可持续和环境友好的方法-已经引起了全球的极大兴趣。本研究以多年生黑麦草(Lolium perenne L.)为试验植物,评价了一种由鱼废堆肥和玉髓石组成的新型生物复合材料对潜在有毒元素污染土壤的植物稳定性。结果表明:生物复合处理显著提高了土壤pH值(0.19个单位)、有机碳含量(174.3%),通过提高养分有效性(速效磷和速效钾分别提高219.6%和146.9%)和植物生长来提高土壤肥力。促进PTE在根系的积累,降低地上部分Pb(44%)、Zn(24%)、Cu(23%)和Ni(14%)的浓度,以及土壤中Cd(71%)、Ni(33%)和Cu(29%)的含量。生物复合材料还改变了pte的分离,降低了它们的流动性和生物利用度。具体而言,它降低了Cu的交换分数(F1) 45%, Cd的71%,Pb的41%和Zn的24%,有效地限制了它们的环境风险。此外,它促进了Pb和Zn重新分布到可还原部分(F2), Cu和Pb重新分布到可氧化部分(F3), Cu、Ni和Cd重新分布到残留部分(F4),表明稳定性增强。Cd(53.9%)和Pb(52.3%)的固定效率最高,证实了生物复合材料在降低PTE迁移率方面的有效性。这些发现强调了生物复合改进剂通过改善土壤理化性质、降低PTE生物有效性和提高植物稳定效率来修复PTE污染土壤的潜力。这种方法支持可持续的废物增值和循环经济原则,为修复高PTE污染的后工业土地提供了一种有希望的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of an organic-mineral biocomposite for sustainable remediation of post-industrial soil contaminated with potentially toxic elements (PTEs).

Numerous technological innovations have been developed for managing post-industrial soils, but assisted phytostabilization-a sustainable and environmentally friendly approach-has attracted significant global interest. This study evaluates the effectiveness of a novel biocomposite, composed of fish waste compost and chalcedonite, in assisting the phytostabilization of soil contaminated with potentially toxic elements (PTEs), using Lolium perenne L. (perennial ryegrass) as a test plant. The results demonstrated that the biocomposite significantly increased soil pH (by 0.19 units), organic carbon content (by 174.3%), improving soil fertility by increasing nutrient availability (available P by 219.6%, and available K by 146.9%), and plant growth. Additionally, it promoted PTE accumulation in the roots while reducing Pb (44%), Zn (24%), Cu (23%), and Ni (14%) concentrations in the aerial parts, as well as Cd (71%), Ni (33%), and Cu (29%) levels in the soil. The biocomposite also altered the fractionation of PTEs, reducing their mobility and bioavailability. Specifically, it decreased the exchangeable fraction (F1) by 45% for Cu, 71% for Cd, 41% for Pb, and 24% for Zn, effectively limiting their environmental risk. Moreover, it promoted the redistribution of Pb and Zn into the reducible fraction (F2), Cu and Pb into the oxidizable fraction (F3), and Cu, Ni, and Cd into the residual fraction (F4), indicating enhanced stabilization. The highest immobilization efficiencies were observed for Cd (53.9%) and Pb (52.3%), confirming the biocomposite's effectiveness in reducing PTE mobility. These findings highlight the potential of biocomposite amendments in remediating PTE-contaminated soil by improving soil physicochemical properties, reducing PTE bioavailability, and enhancing phytostabilization efficiency. This approach supports sustainable waste valorization and circular economy principles, offering a promising strategy for rehabilitating post-industrial lands with high PTE contamination.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Geochemistry and Health
Environmental Geochemistry and Health 环境科学-工程:环境
CiteScore
8.00
自引率
4.80%
发文量
279
审稿时长
4.2 months
期刊介绍: Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people. Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes. The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信