Ming-Wei Liu, Shao-Xin Duan, Xue-Yan Zhao, Qiong-Fen Wang, Shan-Lan Yang, Ni Ma, Xuan Li
{"title":"右美托咪定治疗脓毒症致多器官功能障碍综合征的研究现状及进展(综述)。","authors":"Ming-Wei Liu, Shao-Xin Duan, Xue-Yan Zhao, Qiong-Fen Wang, Shan-Lan Yang, Ni Ma, Xuan Li","doi":"10.3892/ijmm.2025.5535","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis‑induced organ dysfunction syndrome (ODS) arises from a dysregulated response to infection, leading to multiple life‑threatening organ dysfunctions, and is a common complication in critically ill patients. Sepsis results in varying degrees of injury to the brain, lungs, kidneys and liver, culminating in immune dysfunction and multiple ODS (MODS). Current evidence indicates a direct correlation between the severity of organ injury and the prognosis of septic patients. Understanding the mechanisms of MODS in sepsis and developing effective management strategies are vital research areas. The protective effects of dexmedetomidine (DEX) on sepsis are well established, demonstrating its capacity to mitigate injuries to the brain, lungs, kidneys, liver and immune system. The present study reviews recent research progress on the role and mechanisms of action of DEX in the treatment of sepsis.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"55 6","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12045470/pdf/","citationCount":"0","resultStr":"{\"title\":\"Research status and advances in dexmedetomidine for sepsis‑induced multiple organ dysfunction syndrome (Review).\",\"authors\":\"Ming-Wei Liu, Shao-Xin Duan, Xue-Yan Zhao, Qiong-Fen Wang, Shan-Lan Yang, Ni Ma, Xuan Li\",\"doi\":\"10.3892/ijmm.2025.5535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sepsis‑induced organ dysfunction syndrome (ODS) arises from a dysregulated response to infection, leading to multiple life‑threatening organ dysfunctions, and is a common complication in critically ill patients. Sepsis results in varying degrees of injury to the brain, lungs, kidneys and liver, culminating in immune dysfunction and multiple ODS (MODS). Current evidence indicates a direct correlation between the severity of organ injury and the prognosis of septic patients. Understanding the mechanisms of MODS in sepsis and developing effective management strategies are vital research areas. The protective effects of dexmedetomidine (DEX) on sepsis are well established, demonstrating its capacity to mitigate injuries to the brain, lungs, kidneys, liver and immune system. The present study reviews recent research progress on the role and mechanisms of action of DEX in the treatment of sepsis.</p>\",\"PeriodicalId\":14086,\"journal\":{\"name\":\"International journal of molecular medicine\",\"volume\":\"55 6\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12045470/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of molecular medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/ijmm.2025.5535\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijmm.2025.5535","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Research status and advances in dexmedetomidine for sepsis‑induced multiple organ dysfunction syndrome (Review).
Sepsis‑induced organ dysfunction syndrome (ODS) arises from a dysregulated response to infection, leading to multiple life‑threatening organ dysfunctions, and is a common complication in critically ill patients. Sepsis results in varying degrees of injury to the brain, lungs, kidneys and liver, culminating in immune dysfunction and multiple ODS (MODS). Current evidence indicates a direct correlation between the severity of organ injury and the prognosis of septic patients. Understanding the mechanisms of MODS in sepsis and developing effective management strategies are vital research areas. The protective effects of dexmedetomidine (DEX) on sepsis are well established, demonstrating its capacity to mitigate injuries to the brain, lungs, kidneys, liver and immune system. The present study reviews recent research progress on the role and mechanisms of action of DEX in the treatment of sepsis.
期刊介绍:
The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality.
The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research.
All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.