Jasmine Minh Hang Nguyen, Samuel Zolg, Ruth Geiss-Friedlander, Mark Douglas Gorrell
{"title":"多功能调节后脯氨酸蛋白酶二肽基肽酶9及其抑制剂:新的治疗机会。","authors":"Jasmine Minh Hang Nguyen, Samuel Zolg, Ruth Geiss-Friedlander, Mark Douglas Gorrell","doi":"10.1007/s00018-025-05719-4","DOIUrl":null,"url":null,"abstract":"<p><p>Dipeptidyl Peptidase 9 (DPP9) is a prolyl amino dipeptidylpeptidase that can cut a post-proline peptide bond at the penultimate position at the N-terminus. By removing N-terminal prolines, this intracellular peptidase acts as an upstream regulator of the N-degron pathway. DPP9 has crucial roles in inflammatory regulation, DNA repair, cellular homeostasis, and cellular proliferation, while its deregulation is linked to cancer and immunological disorders. Currently, there is no fully selective chemical inhibitor and the DPP9 knockout transgenic mouse model is conditional. Mice and humans in which DPP9 catalytic activity is absent die neonatally. DPP9 inhibition for manipulating DPP9 activity in vivo has potential uses and there is rapid progress towards DPP9 selectivity, with 170x selectivity achieved. This review discusses roles of DPP9 in biology and diseases and potential applications of compounds that inhibit DPP9 and its related proteases.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"187"},"PeriodicalIF":6.2000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12037458/pdf/","citationCount":"0","resultStr":"{\"title\":\"The multifunctional regulatory post-proline protease dipeptidyl peptidase 9 and its inhibitors: new opportunities for therapeutics.\",\"authors\":\"Jasmine Minh Hang Nguyen, Samuel Zolg, Ruth Geiss-Friedlander, Mark Douglas Gorrell\",\"doi\":\"10.1007/s00018-025-05719-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dipeptidyl Peptidase 9 (DPP9) is a prolyl amino dipeptidylpeptidase that can cut a post-proline peptide bond at the penultimate position at the N-terminus. By removing N-terminal prolines, this intracellular peptidase acts as an upstream regulator of the N-degron pathway. DPP9 has crucial roles in inflammatory regulation, DNA repair, cellular homeostasis, and cellular proliferation, while its deregulation is linked to cancer and immunological disorders. Currently, there is no fully selective chemical inhibitor and the DPP9 knockout transgenic mouse model is conditional. Mice and humans in which DPP9 catalytic activity is absent die neonatally. DPP9 inhibition for manipulating DPP9 activity in vivo has potential uses and there is rapid progress towards DPP9 selectivity, with 170x selectivity achieved. This review discusses roles of DPP9 in biology and diseases and potential applications of compounds that inhibit DPP9 and its related proteases.</p>\",\"PeriodicalId\":10007,\"journal\":{\"name\":\"Cellular and Molecular Life Sciences\",\"volume\":\"82 1\",\"pages\":\"187\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12037458/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular and Molecular Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00018-025-05719-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-025-05719-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The multifunctional regulatory post-proline protease dipeptidyl peptidase 9 and its inhibitors: new opportunities for therapeutics.
Dipeptidyl Peptidase 9 (DPP9) is a prolyl amino dipeptidylpeptidase that can cut a post-proline peptide bond at the penultimate position at the N-terminus. By removing N-terminal prolines, this intracellular peptidase acts as an upstream regulator of the N-degron pathway. DPP9 has crucial roles in inflammatory regulation, DNA repair, cellular homeostasis, and cellular proliferation, while its deregulation is linked to cancer and immunological disorders. Currently, there is no fully selective chemical inhibitor and the DPP9 knockout transgenic mouse model is conditional. Mice and humans in which DPP9 catalytic activity is absent die neonatally. DPP9 inhibition for manipulating DPP9 activity in vivo has potential uses and there is rapid progress towards DPP9 selectivity, with 170x selectivity achieved. This review discusses roles of DPP9 in biology and diseases and potential applications of compounds that inhibit DPP9 and its related proteases.
期刊介绍:
Journal Name: Cellular and Molecular Life Sciences (CMLS)
Location: Basel, Switzerland
Focus:
Multidisciplinary journal
Publishes research articles, reviews, multi-author reviews, and visions & reflections articles
Coverage:
Latest aspects of biological and biomedical research
Areas include:
Biochemistry and molecular biology
Cell biology
Molecular and cellular aspects of biomedicine
Neuroscience
Pharmacology
Immunology
Additional Features:
Welcomes comments on any article published in CMLS
Accepts suggestions for topics to be covered