{"title":"配体激活pd催化C(sp3)-H级联合成双环[3.2.0]庚烷内酯","authors":"Zhoulong Fan, Xinpei Cai, Tao Sheng, Jin-Quan Yu","doi":"10.1039/d5sc00711a","DOIUrl":null,"url":null,"abstract":"<p><p>Bicyclo[3.2.0]heptane lactones represent an important scaffold in bioactive molecules. Herein, we report a diastereoselective synthetic disconnection to access bicyclo[3.2.0]heptane lactones from bicyclo[1.1.1]pentane carboxylic acids, which proceeds through palladium-catalyzed C-H activation and C-C cleavage processes. By using two different classes of ligands, MPAA and pyridone-amine, either all-<i>syn</i> arylated bicyclo[3.2.0]heptane lactones or non-arylated ones can be synthesized. The bicyclo[3.2.0]heptane lactone products were converted into multiple substituted cyclobutane, γ-lactone, and oxobicyclo[3.2.0]heptane derivatives to showcase the synthetic versatility of this method.</p>","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12038937/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synthesis of bicyclo[3.2.0]heptane lactones <i>via</i> a ligand-enabled Pd-catalyzed C(sp<sup>3</sup>)-H activation cascade.\",\"authors\":\"Zhoulong Fan, Xinpei Cai, Tao Sheng, Jin-Quan Yu\",\"doi\":\"10.1039/d5sc00711a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bicyclo[3.2.0]heptane lactones represent an important scaffold in bioactive molecules. Herein, we report a diastereoselective synthetic disconnection to access bicyclo[3.2.0]heptane lactones from bicyclo[1.1.1]pentane carboxylic acids, which proceeds through palladium-catalyzed C-H activation and C-C cleavage processes. By using two different classes of ligands, MPAA and pyridone-amine, either all-<i>syn</i> arylated bicyclo[3.2.0]heptane lactones or non-arylated ones can be synthesized. The bicyclo[3.2.0]heptane lactone products were converted into multiple substituted cyclobutane, γ-lactone, and oxobicyclo[3.2.0]heptane derivatives to showcase the synthetic versatility of this method.</p>\",\"PeriodicalId\":9909,\"journal\":{\"name\":\"Chemical Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12038937/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5sc00711a\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sc00711a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis of bicyclo[3.2.0]heptane lactones via a ligand-enabled Pd-catalyzed C(sp3)-H activation cascade.
Bicyclo[3.2.0]heptane lactones represent an important scaffold in bioactive molecules. Herein, we report a diastereoselective synthetic disconnection to access bicyclo[3.2.0]heptane lactones from bicyclo[1.1.1]pentane carboxylic acids, which proceeds through palladium-catalyzed C-H activation and C-C cleavage processes. By using two different classes of ligands, MPAA and pyridone-amine, either all-syn arylated bicyclo[3.2.0]heptane lactones or non-arylated ones can be synthesized. The bicyclo[3.2.0]heptane lactone products were converted into multiple substituted cyclobutane, γ-lactone, and oxobicyclo[3.2.0]heptane derivatives to showcase the synthetic versatility of this method.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.